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Abstract
The object-relational database management system

(ORDBMS) offers many potential benefits for scientific,
multimedia and financial applications. However, work
remains in the integration of domain-specific class
libraries into ORDBMS query processing. A major prob-
lem is that the standard mechanisms for query selectivity
estimation, taken from relational database systems, rely
on properties specific to the standard data types; creation
of new mechanisms remains extremely difficult because
the software interfaces provided by vendors are relatively
low-level. In this paper, we discuss extensions of the gen-
eralized search tree, or GiST, to support a higher-level but
less type-specific approach. Specifically, we discuss the
computation of selectivity estimates with confidence inter-
vals using a variety of index-based approaches and pre-
sent results from an experimental comparison of these
methods with several estimators from the literature.

1. Introduction
The object-relational database management system

(ORDBMS) offers many potential benefits for complex
applications. Perhaps the most compelling is the ability to
integrate domain-specific data-type libraries (which are
termed extenders, data cartridges or DataBlades® by ven-
dors) into the database engine; research ORDBMS appli-
cations have already been developed in scientific areas as
diverse as bioinformatics [17], ocean and atmospheric sci-
ences [12, 16] and high-energy physics [6]. In addition,
commercial type libraries for ‘‘mainstream’’ but scientifi-
cally important types such as text, image, video, time

* With apologies to Oscar Wilde (Nowadays people know the
price of everything and the value of nothing.) and Alan Perlis (A LISP
programmer knows the value of everything, but the cost of nothing.).
DataBlade is a registered trademark of Informix Software.

† Author’s current address: Xerox Palo Alto Research Center,
3333 Coyote Hill Rd., Palo Alto, CA 94304-1314 USA. Research at
Berkeley supported by NASA under contracts FD-NAG5-6587 and FD-
NAGW-5198.

series and geospatial data are now common.
This paper addresses a common problem area in the

creation of such type libraries: the estimation of predicate
selectivity, the fraction of records remaining after apply-
ing a selection predicate. Selectivity estimation code of
reasonable quality is a significant performance issue
because it integrates the application-specific operators
into the database engine’s query optimization infrastruc-
ture. Query optimizers compile declarative queries into
query plans, dataflow programs that can be executed by
the engine. To do so, optimizers require estimates of the
execution costs of candidate (sub)programs. These cost
estimates, based on formulæ that are largely parameter-
ized by selectivity, need not be exact but must be suffi-
ciently accurate for the optimizer to be able to avoid
grossly inefficient query plans.

Selectivity estimation has been widely studied, but
rarely in terms of a general framework for extensible
database management systems. We describe a set of
approaches based on a modification of the generalized
search tree, or GiST [22], which supports flexible tree
traversal [5]. Each approach uses approximate cardinality
metadata, stored in the index nodes, to produce incremen-
tally-refined selectivity estimates with confidence inter-
vals. Although our approaches apply classic techniques
(top-down tree traversal and random sampling), previous
work in this area has been designed with different
assumptions in mind or for different goals. As we will
see, these differences motivate new algorithms.

From an engineering viewpoint, the main benefit of
this index-based approach is that it applies a solution to a
relatively well-understood problem (search) to a relatively
poorly-understood problem (estimation). This enables
database extenders, who are typically domain knowledge
experts, to produce estimators without becoming experts
in other domains (statistics, database cost models,etc.).
The intuitive appeal of this approach is supported by an
empirical trend observed by extensible database vendors:
third-party extenders are far more likely to try to integrate
search structures than they are to write non-trivial selec-
tivity estimators.



From an algorithmic viewpoint, the theme of this work
(which is closely related to work on sampling-based esti-
mation,e.g., [26]) is the ‘‘best effort’’ use of an explicit,
limited I/O budget in the creation of interval estimates. It
contains three main contributions. First, we provide a
broad discussion of the ‘‘GiST as histogram.’’ We giv e a
new algorithm that uses index traversal to produce selec-
tivity estimates with deterministic confidence intervals
(bounds withp = 100%) over arbitrary user-defined types.
Second, we consider the integration of tree traversal with
index-assisted sampling (which produces confidence
intervals withp ≤ 100%). Third, we provide results of an
experimental comparative study (using a variety of geo-
graphic, Earth science and multimedia data sets) between
our techniques and many of the proposed parametric mul-
tidimensional estimators. This is the only comparative
study (concurrent work aside [1]) that compares these
estimators to anything except the trivial estimator (based
on the uniformity assumption).

The remainder of the paper is organized as follows. In
Section 2, we provide a brief overview of the main back-
ground concepts and algorithms. We build on this back-
ground in Section 3, giving estimation algorithms based
on index traversal and index-assisted sampling. Sections
4 and 5 explain our experimental infrastructure, proce-
dures and results. Section 6 reviews related work. We
conclude in Section 7. Additional algorithmic issues,
experimental results and discussions of future work are
contained in the full paper [4].

2. Background and assumptions
In this section, we briefly review the concepts and

assumptions that underlie our approach. First, we give an
overview of the approach. We then describe the specific
index structure used. Specifically, we discuss the con-
cepts of the generalized search tree and the pseudo-ranked
tree.

Our approach to a general estimation infrastructure fol-
lows from two observations. First, a tree-structured index
is a partitioning of an arbitrary data set at an arbitrary res-
olution. That is, the index recursively divides the indexed
data into clusters; these clusters support efficient search,
assuming that the data isindexable[24] and the index
design is effective. Efficient indexed search over a giv en
workload means that we examine a minimal number of
extraneous objects over that workload. Second, in the
process of implementing indices for their new data types,
database extenders necessarily provide code to partition
instances of the data types in question. By exploiting this
existing code, we can solve our estimation problem ‘‘for
free’’ (from the extender’s point of view).

Symbol Meaning

N Number of leaf records.

h Tree height (path length from root to leaf).

n Number of samples.

c True cardinality of a subtree (∈[c−, c+]).

c0 Cardinality estimate center value (∈[c−, c+]).

c−, c+ Cardinality estimate {lower, upper} bounds.

u Cardinality estimate uncertainty, or length of deter-
ministic confidence interval.

e. p Predicate (key) of node entrye.

e. ptr Child pointer of node entrye.

c0
e, c−

e, c+
e c0 (c−, c+) for a specific node entry,e.

c0
Σ, c−

Σ, c+
Σ Runningc0 (c−, c+).

Table 1. Summar y of notation.

For an index-based approach to be practical, it should
have limited maintenance overhead, controlled runtime
overhead and controlled estimate precision. This paper
explores how to perform index-based estimation in a way
that permits us to strike a balance between these factors.

Table 1 summarizes the notation used in this paper.

2.1. Generalized search trees
Throughout this paper, we assume that indices are

based on an extended version [5] of the basic GiST frame-
work [22]. In this subsection, we briefly summarize the
relevant properties of this extended framework.

The basic GiST generalizes the height-balanced, multi-
way tree. Each treenode contains a number ofnode
entries, e = <p, ptr >, where eachpredicate, p, describes
the subtree indicated by its corresponding disk pointer,
ptr. The subtrees recursively partition the data records.
However, they do not necessarily partition the data space.
GiST can therefore model unordered, non-space-partition-
ing trees (e.g., R-trees [19]) as well as ordered, space-par-
titioning trees (e.g., B+-trees).

The original GiST framework consists of a set of com-
mon templatemethods provided by GiST and a set of
extensionmethods provided by the user. The template
methods generally correspond to the functional interfaces
specified in other access method interfaces:SEARCH,
INSERT and DELETE. An additional method,ADJUSTKEYS,
serves as a ‘‘helper’’ forINSERT and DELETE; this method
enforces tree predicate invariants,e.g., bounding-box con-
tainment for R-trees. The basic extension methods, which
operate on predicates, includeCONSISTENT, PENALTY and
UNION. The novelty of GiST lies in the manner in which
the behavior of the template methods is controlled (cus-
tomized) by one or more of the extension methods. For
example,SEARCH calls theCONSISTENT method to deter-
mine which subtrees it must visit (in a manner analogous
to the usual B+-tree key test); hence, only the user-defined



CONSISTENT must understand anything about the specific
data type.

In recent work [5], we have added a number of addi-
tional extension methods.ACCURATE controlsADJUSTKEYS

asCONSISTENTcontrolsSEARCH, permitting ‘‘sloppy’’ pred-
icates. PRIORITY allowsSEARCH to traverse the tree in ways
other than depth-first search. As each node is examined, a
priority value is assigned to each of itsCONSISTENT node
entries; a priority queue is used to determine the order in
which the descendant nodes are traversed. Finally, the
iterator mechanism (consisting of three extension meth-
ods, STATEINIT, STATEITER and STATEFINAL ) allow us to
compute aggregate functions over the index records
encountered during the index traversal.

To summarize, the original framework for defining
tree-structured indices over arbitrary data types has been
extended with a framework for flexibly traversing these
indices and computing aggregate functions over the tra-
versed nodes. In the remainder of the paper, we require
these capabilities but no additional GiST properties.

2.2. Pseudo-ranked trees
Pseudo-ranked trees are one of the example applica-

tions enabled by the GiST extensions. Here, we define
pseudo-ranking and explain its relevant properties. Much
of this discussion and notation follows that of
Antoshenkov [2].

An easy and intuitive way to construct a ‘‘hierarchical
histogram’’ from a tree index is to augment every non-leaf
node entry with a cardinality count (i.e., the total number
of leaf records in the specified subtree). Such counts are
commonly calledranks [38]. Inserting or deleting a
record results in node modifications from leaf to root
because any such update changes the cardinality of every
subtree containing that record. This is generally consid-
ered to be impractical in a production DBMS (though
bulk-update, common in data warehouses, can reduce this
cost). A lower-cost alternative is to compute upper
bounds on the corresponding subtree’s cardinality using a
node’s height within the tree and simple fanout statistics
[37]. Such bounds may be imprecise if the tree is not full.

Pseudo-ranking balances the cost of rank maintenance
against bound imprecision. The amortized space and time
costs of pseudo-ranking are low enough that it has been
incorporated in a high-performance commercial DBMS,
Rdb/VMS (now Oracle Rdb).

Definition 1 [2]: A tree ispseudo-rankedif, for each
node entry e, we can compute a cardinality estimate,
c0

e, as well as lower and upper bounds, c−
e ≤ c0

e ≤ c+
e,

for the subtree indicated by e. ptr . Also, c−e ≤ c ≤ c+
e,

where c  is the true cardinality. (If c−
e = c0

e = c+
e, the

tree isranked.)
We do not yet specify howc+

e and c−
e are computed,

though (by convention) we assume thatc−
e = c0

e = c+
e = 1 if

e is a leaf record. Additionally, we will assume that the
index satifies the following condition:

Definition 2 [2]: Let i indicate a given node entry, and
let child(i) indicate the node to which i. ptr refers. A
pseudo-ranked tree satisfies thenested bound condi-
tion if c+

i ≥
j ∈child(i)

Σ c+
j and c−i ≤

j ∈child(i)
Σ c−

j for all non-

leaf index records i.
In other words, the interval [c−

i , c+
i ] in the parent node

entry always contains the aggregated intervals of its child
node entries. The extended GiST framework can enforce
these bounds automatically using theACCURATE extension
method.

Figure 1(a) shows a pseudo-ranked GiST. For clarity,
the predicates in this example are simple 2D bounding
rectangles, so the tree is structurally an R-tree. The
(explicitly stored) cardinality estimatec0 for each node
entry appears next to its pointer, along with the corre-
sponding (derived) values for the boundsc− and c+.
Antoshenkov [2] gives an example formula forc− andc+,

Πi=0
h−1(1 + A ⋅ Qi ) − 1, that provides fixed imprecision

bounds for a given tree height. The values forc− andc+

in Figure 1(a) assume the use of this example formula
with A = 1⁄2 andQ = 1⁄2. (Figure 1(b) will be discussed in
Section 3.1.)

Use as hierarchical histogram. Descending the tree
results in interval estimates of non-decreasing tightness.
First, node entries that are notCONSISTENT can be pruned.
Second, because of the nested bound condition, an inter-
val estimate computed from a parent node entry can never
be tighter than the interval estimate computed from any of
its (aggregated) descendant node entries.

As a ‘‘sloppy histogram,’’ the pseudo-ranked tree has
precision that depends on the acceptable update overhead.
In Sections 3.3 and 5.4 of the full paper, we explain why
the imprecision caused by pseudo-ranking is easily com-

puted and small in practice.1

Use in sampling. In the remainder of the paper, we
assume that index-assisted sampling (hereafter,index
sampling) is implemented using acceptance/rejection
(A/R) sampling applied to pseudo-ranked trees. A
detailed discussion of this method is beyond the scope of
this paper and may be found elsewhere [2, 37]. The

1 As an aside, note also that we can actually tune the tree ‘‘on-
line’’ by increasing the bounding formula dynamically (i.e., all aspects
of pseudo-ranking continue to work without modification); hence, we
can always start with a ranked tree and increase the imprecision until we
reach an acceptable level of update overhead.



node u c−
Σ c0

Σ c+
Σ uΣ

(a) - 5 13 31 26
(c) 15 7 12 20 13
(b) 11 9 12 17 8
(f) 3 9 11 14 5
(g) 2 7 10 12 3
(e) 2 9 9 10 1
(d) 1 9 9 9 0

(c)(b)

(d) (e) (f) (g) (h)

(a)

...
query

(a)

(b)

(h)
(g)

(c)

(d),(e),(f)

[5  9  16] [5  8  15]

[2  2  3] [2  3  4] [3  4  6] [2  3  4] [3  4  6]

[c- c0 c+]

valid record

c-    lower bound
c0   center value
c+    upper bound

50% overlap

Notes:
• Node (h) is pruned immediately

after node (c) is visited.
• Ties between nodes with equalu

values are broken arbitrarily.

(a) Tree structure with pseudo-ranks and predicates. (b) Traversal and results.

Figure 1. A pseudo-ranked GiST with an example traversal.

relevant points are that the index supports equiprobable

sampling2 with an additional cost that is proportional to

the error introduced by pseudo-ranking.3

3. Algorithms
We now apply the techniques of Section 2 to produce

new estimation algorithms. First, we describe a new algo-
rithm based on index traversal. We then give a novel way
to combine this traversal mechanism with index-assisted
random sampling.

3.1. Interval estimation using traversal
In this subsection, we propose a method of index

traversal for estimation. We first describe how the method
works. We then discuss the relative disadvantages of
other, more ‘‘obvious,’’ solutions. Finally, we provide
more detail and work through an example.

The high-level problem statement is that we wish to
probe the tree index, examining nodes to find node entries
whose predicates match (i.e., are CONSISTENT with) the
query. Howev er, unlike a search algorithm, the desired

2 A/R sampling from an unbalanced pseudo-ranked tree (and
therefore, by immediate extension, from a pseudo-ranked forest) returns
each record with equal probability (see Appendix D of the full paper).
We will need this result in the next section because sampling from the
frontier of a traversal is essentially sampling from a forest.

3 Pseudo-ranking implies that the exact size of the population be-
ing sampled is unknown. The simplest way of dealing with this is to
perform random sampling from a subpopulation, or domain of study [13,
Sec. 2.13]; this simply introduces a relative error proportional to the
overestimate of population size.

estimation algorithm need not obtain records from the leaf
level. Instead, the cardinality intervals associated with the
CONSISTENT node entries are aggregated into an approxi-
mate query result size. The reason to limit the number of
nodes visited is cost, both in terms of CPU and I/O; most
importantly, I/Os used during query optimization compete
for disk arm time with actual query processing.

Obtaining precise answers means examination of
nodes that maximize the reduction ofuncertainty,
uΣ = c+

Σ − c−
Σ (the summations are over the nodes exam-

ined thus far). We cannot tell in advance how much each
node will reduce our uncertainty, so we cannot construct
an optimal on-line algorithm; we must settle for a heuris-
tic that can use the information available in each node
entry to guess how much following its pointer will reduce
the overall uncertainty. Fortunately, it turns out that we
can never ‘‘lose’’ precision by descending a pointer —
descending a pointer from node entrye to child(e) nev er
increases uncertainty if the index satisfies the nested
bound condition (see Appendix C of the full paper) — so
we have a great deal of flexibility in choosing a traversal
order.

A general approach using prioritized traversal [5] and
incremental aggregation is outlined in Figure 2. The
approach gives us three major degrees of freedom: how to
prioritize (order) the tree traversal, how to aggregate (i.e.,
what statistics to keep) and how to stop traversal.

Previous approaches fit within this framework but do
not work well in practice.Depth-first (PRIORITY = node
depth) andbreadth-first(PRIORITY = node height) traversal
algorithms have two main flaws. First, they do not limit
the number of nodes visited. For example, the ‘‘key range



Queries Having Root
as Split Level (%)

Scale Mean Query
Factor Selec. (%)

R-tree B+-tree

1 0.041 83 0.24
2 0.85 91 6.4
3 31 99 93

1. push root into priority queue
2. initialize statistics
3. while (not done)
4. pop node entry e from priority queue
5. update statistics (subtracting e)
6. fetch node n using e.ptr
7. for each CONSISTENT node entry e′ ∈ n
8. push e′ into priority queue
9. update statistics (adding e′)

Figure 2. Basic algorithm outline. Table 2. Split-level and dimensionality.

estimator’’ in some versions of DB2/400 (which even lim-
its the depth of tree descent) sometimes read-locks the
entire index for minutes. This causes severe problems for

update transactions.4 Second, neither depth-first nor
breadth-first traversal are well-suited for incremental use.
If we cut off traversal after visiting some number of
nodes, depth-first will have wasted much of its effort
traversing low-level, low-uncertainty regions (e.g., leaf
nodes), while breadth-first may have visited the children
of nodes that were fully subsumed by the query (and
therefore had low uncertainty). Thesplit-level heuristic
[3], described in more detail in Appendix B of the full
paper, also usesPRIORITY = node depth. By stopping
descent when the query predicate isCONSISTENTwith more
than one node entry in the current node, it visits at most
logN nodes. This heuristic is effective for low-dimen-
sional partitioning trees (e.g., B+-trees), but as the data
type becomes more complex, the split-level heuristic
degrades into an examination of the root node. Table 2
illustrates this effect using data sets and queries drawn
from our experiments in Section 4. The table shows the
percentage of queries (out of 10,000 drawn from each of
three different selectivity ranges) that stop after inspecting
the root node of a given image feature vector index. The
first column shows what happens if all 20 dimensions are
indexed, while the second describes the corresponding
values if only the highest-variance dimension is indexed.
(The key size is kept the same to produce structurally sim-
ilar trees.)

We plainly require incremental algorithms, of which
the following prioritized traversal variant is an example.
References to ‘‘linei ’’ are to the corresponding lines in
Figure 2.

Priority. PRIORITY is computed from the uncertainty,u,
of each node entry. Hence, node entries with high uncer-
tainty are traversed first (line 4).

4 This is due solely to the length of the index traversal process:
‘‘When large files are involved (usually a million records or more), an
estimate key range can take seconds or even minutes to complete’’ [27].

Statistics. The algorithm keeps three running statis-
tics: c−

Σ, c0
Σ and c+

Σ. As the algorithm descends the tree,
node entries withCONSISTENT predicates are pushed into
the priority queue and their associated statistics are added
to each statistic (lines 8,9). As node entries are removed
from the priority queue, their statistics are also removed
(lines 4,5).

If the node entry predicate is wholly contained (sub-
sumed) by the query predicate, the running statistics are
updated using thec−, c0 andc+ values stored in the node
entry. Howev er, if the node entry predicate only overlaps
the query predicate, the statisticc−

Σ is not changed (as if
c− = 0) — this is a lower bound and we cannot guarantee
that any records beneath this node entry are actuallyCON-

SISTENT with the query predicate. Similar reasoning
applies to the estimatec0 (but not the upper boundc+).

For example, the R-tree traversal estimators depicted in
Figure 1(b) use a trivial overlap-based estimator. Giv en a
non-leaf index entry, we estimatec0 by assuming that the
number of records matching a query is proportional to the
fraction of the entry’s predicate that overlaps the query.
This is analogous to the logic used in unidimensional his-
togram estimation. If the extender does not provide the
logic to compute such domain-specific local estimators, a
generic estimator forc0 can be used (e.g., assuming that
half of the records match).

Stopping rule. The algorithm may halt (line 3) when
the reduction of uncertainty ‘‘tails off’’ or some predeter-

mined limit on the number of nodes is reached.5 An obvi-
ous way to measure tail-off is to track the rate of change
of the confidence interval width, halting when a disconti-
nuity is reached. We defer additional discussion until
Section 5.

To show the algorithm in operation, we return to Fig-
ure 1. Figure 1(b) shows an example of the prioritized
traversal algorithm running to completion on the pseudo-
ranked tree depicted in Figure 1(a). The nodes are visited

5 A decision-theoretic framework [42] might well be possible, but
it is not immediately clear how to compute expected utility in a query
optimization context.



in an order corresponding to the uncertainty,u, of their
corresponding parent node entries. Most of the iterations
are straightforward except for those relating to nodes (a)
and (c). When node (a) is examined, we find that the
query predicate covers (exactly) half of node (c)’s node
entry predicate. Hence, when the algorithm examines
node (a),c−

(c) = 0 andc0
(c) = 4 (instead of 5 and 8, respec-

tively). In addition, when node (c) is examined, node (h)
is pruned (its predicate is notCONSISTENT with the query
predicate).

3.2. Sampling as a supplement to traversal
Random sampling does not produce deterministic con-

fidence intervals as does our traversal-based estimator.
However, it can potentially produce tighter interval esti-
mates with high confidence. The main issue is how to
decide between when to apply each of the techniques. In
this subsection, we first discuss some dualities and syner-
gies between the two techniques. These intuitions lead us
to a strategy that switches from traversal to sampling.

Index traversal alone might not permit us to meet our
desired accuracy goals. Indices cluster records together in
a way that minimizes the number of nodes that must be
retrieved to answer a query and work well when the index
‘‘fits’’ the query — records should bedensewith respect
to the queries that use the index. If the data issparse, i.e.,
matching records are scattered among many nodes, sam-
pling may work better.

The problem of deciding when to switch to sampling is
closely related to the problem of halting traversal (dis-
cussed in the previous subsection). The main difference is
that our decision process must somehow model the
expected benefit of sampling. A simple strategy is to base
this decision on conservative (Chernoff/Hoeffding) confi-
dence intervals. As traversal proceeds, we compare the
most recent decrease in confidence interval width to the
corresponding decrease for a conservative sampling esti-
mator. (Put another way, we compare themeasured
slopes of the traversal estimator’s confidence intervals and
thepredictedslopes of the sampling confidence intervals.)
This works because the conservative confidence intervals
decrease deterministically as more samples are obtained.
Switching to sampling makes sense when traversal has
begun to produce results worse than the expected results
from sampling.

4. Experimental procedure
In the next two sections, we describe a set of experi-

ments we conducted to assess the effectiveness of our
techniques. In this section, we discuss the indices and
algorithms used as well as the data/query sets on which
they were used. Additionally, we detail the estimation

algorithms we used as benchmarks. Finally, we sketch the
overall experimental design.

In the introduction, we emphasized the generality of an
index-based approach to selectivity estimation. We
selected multidimensional point data for these compara-
tive experiments for two main reasons. First, multidimen-
sional data has many applications in scientific and multi-
media databases. Second, there are several proposed
selectivity estimators with which we can compare our
results. (By contrast, had we chosen set data indexed by
RD-trees [22], we could only have compared our tech-
niques with random sampling.)

4.1. Data structures and algorithms
This subsection describes our specific implementations

of the general algorithms described in Section 3. We dis-
cuss the index structures, the index loading algorithms,
and the estimation algorithms in turn.

Indices. We implemented pseudo-ranked GiSTs using

libgist 1.0.6 Since our experimental application domain is
multidimensional, we used a GiST based on bounding
rectangles (i.e., an R-tree). To avoid conflating the effects
of pseudo-ranking with the effects of other experimental
variables, we measured only ranked trees. (As mentioned
in Section 2, the worst-case effect of pseudo-ranking on
our interval estimates has easily-computed bounds.)

Loading algorithm. Loading has a strong effect on
the effectiveness of an index. We used a variety of load-
ing algorithms, each of which represented a class of
related algorithms: insertion-load using randomly-ordered
records, insertion-load using Hilbert-clustered [29]
records, bulk-load using Hilbert-clustered records, bulk-
load using STR-clustered [33] records.

Estimators. The traversal and aggregation interfaces
allow us to implement estimation using prioritized traver-
sal, breadth-first traversal, and A/R index sampling in
about 500 lines of C++. These extensions are admittedly
somewhat tricky, since each essentially implements a spe-
cialized state machine; however, this is not much of an
issue because the extender plugs code into these exten-
sions rather than writing new ones.

For both base-table (simple random) sampling and
index (A/R) sampling, we implemented a variety of run-
ning interval estimators for the mean. These estimators

6 libgist, including driver programs and a suite of predefined access
methods, consists of about 20K lines of C++ and is freely available from
http://gist.cs.ber keley.edu/. libgist 1.0 implements primary access methods
(data records stored in the leaf nodes) on top of a simple storage manag-
er that can be replaced by the SHORE recoverable storage manager [9]
at compile-time.



Dimensionality Density
Insertion Bulk-load

random Hilbert Hilbert STR
D D0 D2

Data set Records

GNIS 1.837 1.746 3.997 2.773 2.274 1.627

Uni2 2 2 31.33 4.894 2.974 2.553
1,517,114 2

GTSPP 1.906 0.9368 10.79 3.361 4.276 1.950

Uni4 4 4 171.8 11.28 7.573 4.477
1,167,671 4

Blob 5.101 1.235 0.06804 0.06948 0.1904 0.07910

Uni20 20 20 62.66 12.82 7.924 7.430
26,021 20

Table 3. Data set characteristics.

were based on conservative [23], central limit theorem
(CLT) [20], and non-parametric BCa bootstrap confidence
intervals [14]. Conservative techniques are more appro-
priate than those based on CLTs for the sample sizes
under study but provide weaker bounds; in terms of useful
sample sizes, we have empirically observed that the non-
parametric BCa bootstrap falls somewhere in between the
other two.

4.2. Bases for comparison
As our ‘‘benchmarks,’’ we selected several parametric

point estimators from the literature on spatial databases.
Different estimators apply torandom-centeredandobject-

centered window queries [39].7 For random-centered
queries, we implemented and compared estimators based
on the uniformity assumption, the Hausdorff fractal
dimensionD0 [15] and density (expected stabbing num-
ber) [43]. For object-centered queries, we also used an
estimator based on the correlation fractal dimensionD2

[8].
We chose not to compare our techniques with non-

parametric estimators based on space-partitioning for a
simple reason: these techniques require summary data that
is exponential in the embedding dimension,D. For exam-
ple, a simple histogram-like variant of the density tech-
nique [43] would have required 3D ≈ 3.5 billion density
points for D = 20. The same argument applies to space-
partitioning multidimensional histograms [40, Ch. 9].
(When details and implementations become available,
comparisons with more parsimonious non-parametric
methods such as wav elet-encoded histograms [35] should
be instructive.)

7 Random-centered queries establish the base location (e.g., center
point) of a query shape from a probability distribution defined on the un-
derlying space. Object-centered queries select a random object from the
data set to establish the query location. For queries over highly skewed
data sets, object-centered queries tend to have higher selectivities.

4.3. Data sets
We chose to conduct experiments on selected data sets

rather than on synthetic data sets generated using simple
parametric distributions. The latter approach does enable
sequences of experiments to be conducted using the distri-
bution parameters as a controlled variable. However, the
usual simple distributions (e.g., normal, Zipf) do not tend
to describe the distribution of real data sets particularly
well, which makes the benefits somewhat moot.

We used three separate real data sets of varying embed-
ding dimensionality,D:
• Geographic coordinates from the USGS GNIS data set
(D = 2) [44]. This represents GIS workloads.
• Spatial coordinates plus time from the NOAA GTSPP
data set (D = 4) [21]. GTSPP is a bathythermograph
(ocean temperature) database and represents Earth science
workloads.
• Image feature vectors from the Berkeley Digital Library
Project’s Blobworld system (D = 20) [10]. The 20
dimensions result from applying the singular value
decomposition to 256-bin histogram values in the CIE
LUV color space and then truncating. This represents
multimedia workloads.

For each real data set, we also generated uniform ran-
dom data sets of the same dimensionality and cardinality.
Uniform data has two specific properties of interest. First,
it often represents a kind of ‘‘worst case’’ for simple clus-
tering techniques because it reduces the effectiveness of
partitioning heuristics. We will see an example of this in
Table 5. Second, it represents a kind of ‘‘best case’’ for
most parametric estimators — uniform data is simply a
degenerate case of most models.

Table 3 summarizes the characteristics of each data set.
We measured the fractal dimensionsD0 and D2 of each
real data set using the software of Belussi and Faloutsos
[8]. (The fractal dimension of the uniform random data
sets was not measured as it is equal to the embedding
dimension.) The full paper contains some additional
observations about the characteristics of our data sets.



4.4. Experimental design
Our experimental design varied data sets, load algo-

rithms, the use of random-centeredvs. object-centered
queries, query scale factors and query aspect ratios (the
last two factors are defined below). After a pilot study of
500 replications (queries) per experiment, we performed
10,000 replications per experiment.

Queries. For each data set, we generated (uniform)
random-centered and object-centered query rectangles.
We generated the queries in three distinct equivalence
classes, orscale factors. All members of a query class
have identical geometries and can therefore be expected to
have a result size similar (but not identical) to that of its
fellow class members. Each member of a class is consid-
ered equally likely (i.e., is assigned equal weight in the
results).

The extent (side lengths) of the query rectangles varied
depending on the data set applications. For example, the
GTSPP query parameters were based on our experience
with a particular geoscience application [16]. We also
varied the geometricaspect ratioby doubling the length
of the basic query shape along one axis. The actual query
shape parameters can be found in Appendix E of the full
paper, though the resulting selectivity factors (which are
much more critical to the final results) are specified in
Section 5.

Criteria. Loosely, we define ‘‘success’’ in our estima-
tion problem as 1% absolute error for queries with selec-
tivity of 1% or less. If the query is less selective, then we
have no Boolean criterion analogous to the 1% ‘‘suc-
cess’’; we simply seek more precise answers. We justify
this approach as follows. An application for histograms is
unclustered index scan selection. Here, we wish to know
the number of records so we can compute the number of
expected base-table I/Os — crudely, the unclustered index
‘‘break-even’’ point is when the selectivity equals the
inverse of the mean index node occupancy (fill factor). In
practice, this is ‘‘a single-digit percentage’’ [31]. For this
problem, it is therefore most important to know whether
or not the selection result size falls into the ‘‘1%’’

category.8

In spite of our use of query classes, the arithmetic
mean of the absolute errors tends to be misleading due to
skew and/or bimodality. Wherever we present a mean
absolute error, we also present the maximum error as a

8 Few vendors show interest in single-table estimation with reso-
lution much finer than 1%. Most vendors currently use equidepth his-
tograms or quantile values, for which the number of buckets corresponds
directly to the maximum absolute error. Vendor tuning documents gen-
erally recommend fewer than 100 buckets [4].

measure of disperson. To summarize the relative error
within each class, we use a ratio-of-sums (weighted har-
monic) mean (cf. [30, Ch. 12], [40, p. 73]).

5. Experimental results
We now present the results of the experiments just

described. First, we summarize the effectiveness of the
various alternative estimators. Second, we discuss some
results on the use of heuristics for limiting the duration of
index traversal. Note that the results presented represent
points in the potential application space for the technique.
It would plainly be impossible to demonstrate high effec-
tiveness forall indices (after all, the effectiveness of the
technique depends on the effectiveness of the index itself).

Discussion of the hybrid traversal/sampling approach
described in Section 3.2 is deferred to the full paper due
to space limitations.

5.1. Estimation effectiveness
Each estimator was instrumented to produce incremen-

tal results as it processed between 1 and 64 index nodes.
The results in this subsection describe a ‘‘snapshot’’ of the
results at 12 nodes (i.e., a fixed, identical cost for both
traversal and sampling). This is a somewhat arbitrary
number, chosen because it is 3-4 times the height of the
index; this affords a few probes from root-to-leaf so that
sampling has some chance of working.

Tables 4 and 5 show two illustrative extracts from this
snapshot (full tables are contained in Appendix A of the
full paper). We do not present results from the Hilbert-
order data sets because their behavior is qualitatively sim-
ilar to that of STR. For similar reasons, we do not present
the results of the varied aspect ratios. (The differences in
both cases can be quantitatively significant, even interest-
ing, but are not illustrative for the points of study.)
Results using breadth-first traversal are also excluded
because it was dominated by uncertainty-prioritized
traversal.

The format of Tables 4 and 5 is as follows. For each
combination of data set, query scale factor and query cen-
ter type (object or uniform random), we give the mean
selectivity and a variety of error metrics for each applica-
ble estimator. Since some estimators produce different
results depending on how the index was loaded (insertion-
or bulk-loaded), we list these separately. Here, ‘‘index’’
indicates prioritized index traversal, whereas ‘‘sample’’
indicates simple random sampling with replacement from
a base table (no index) in conjunction with conservative



Data / Scale Mean s.d. Load Est Mean Rel. Mean Abs. Max. Abs Mean c.i. Max. c.i.
/ Query Sel. (%) Error Error (%) Error (%) Width (%) Width (%)

i index 0.0957 0.0199 0.2410 0.5123 5.7478
b index 0.0176 0.0037 0.0795 0.1110 0.5893

sample 1.3324 0.2778 7.8113 35.5364 44.0060
D2 0.5793 0.1208 1.1034

GNIS / 2 / o 0.2085 0.0014

i index 0.0476 0.6159 2.7284 13.2880 33.5049
b index 0.0766 0.9903 4.3601 11.1679 25.6842

sample 0.4964 6.4206 42.1618 47.9793 70.6604
D2 0.5683 7.3514 21.4943

GNIS / 3 / o 12.9348 0.0643

i index 0.8553 0.1795 2.4018 49.3148 72.0985
b index 0.4989 0.1047 1.6321 1.7342 15.5191

sample 0.4165 0.0874 2.0259 35.5396 39.7573
D2 0.8379 0.1759 2.4385

GTSPP / 2 / o 0.2099 0.0002

i index 0.3165 3.6874 12.3467 68.6537 81.2857
b index 0.1393 1.6228 6.4663 27.9042 42.3499

sample 0.0618 0.7205 4.1933 46.9762 61.8927
D2 0.9738 11.3447 24.3291

GTSPP / 3 / o 11.6502 0.0324

i index 0.9869 0.8424 4.3740 34.8422 84.3703
b index 0.4674 0.3990 2.5149 7.3323 37.1930

sample 0.5157 0.4402 6.2682 36.1739 45.5452
D2 3.3550 2.8640 3.7072

Blob / 2 / o 0.8536 0.0004

i index 0.7035 22.0057 45.2617 85.9696 98.1131
b index 0.4205 13.1550 30.1561 64.7500 94.6313

sample 0.1391 4.3505 25.6728 61.7832 70.6604
D2 0.4368 13.6644 35.3293

Blob / 3 / o 31.2809 0.0437

Table 4. Excerpted results: real data — 12 nodes.

Data / Scale Mean s.d. Load Est Mean Rel. Mean Abs. Max. Abs Mean c.i. Max. c.i.
/ Query Sel. (%) Error Error (%) Error (%) Width (%) Width (%)

i index 0.3139 0.0006 0.0035 44.9318 82.7869
b index 0.0630 0.0001 0.0013 0.0271 0.2098

sample 1.9370 0.0037 0.1716 35.3320 35.5038
uniform 0.9891 0.0019 0.0042
D0 9.0136 0.0171 0.0189

i density 268.6663 0.5102 0.5120
b density 23.4731 0.0446 0.0464

Uni4 / 2 / u 0.0019 0.0000

i index 0.1729 0.7469 4.0015 77.0006 95.9137
b index 0.0264 0.1140 0.6523 16.4926 33.1527

sample 0.1093 0.4724 2.6366 39.6432 45.5732
uniform 0.9809 4.2375 8.2187
D0 0.3398 1.4681 4.9760

i density 4.4314 19.1441 22.7537
b density 0.3881 1.6765 4.7865

Uni4 / 3 / u 4.3201 0.0226

Table 5. Excerpted results: synthetic data — 12 nodes.

confidence intervals.9 Note that the confidence interval

widths are full widths, not half-widths.10

9 The fractional conservative confidence interval widths vary be-
tween scale factors, which may be confusing since (by definition) they
are fixed for a given number of samples. However, we truncate each
query’s interval widths at [0,N] (i.e., 0% and 100%); hence, the mean
width for each scale factor varies based on edge effects,i.e., how many
of its constituent intervals happen to ‘‘stick out’’ beyond these limits.

10 This is for two reasons. First, the deterministic confidence in-
tervals are usually asymmetric. Second, the conservative confidence in-
tervals we present are actually asymmetric as well. This is because we

The tables reveal several points that agree with intu-
ition or previously-established results. First, the estimate
error is generally best for the index-traversal method with
bulk-loaded data. The success of the bulk-loaded index
estimator is to be expected since it is using relatively well-
partitioned data. The relative ineffectiveness of the

truncate the low/high ends of the probabilistic intervals at the low-
est/highest known deterministic intervals, whether obtained from a pre-
vious index traversal phase or the trivial bounds [0,N].



insertion-loaded index estimation implies that the traver-
sal-based technique is best used with an index optimized
for the workload. Second, the estimate error and confi-
dence interval widths degrade for all methods as the
dimensionality of the data increases. We expect an effect
like this due to the ‘‘curse of dimensionality,’’ and analo-
gous degradations have been widely documented else-
where in the statistics and computer science literature
[41]; the index-based technique works better with lower-
rank projections of the same data set. Third, random sam-
pling performs quite poorly unless the selectivity is large
(i.e., >> 1%). This is due to a combination of the small
sample size with (1) the weakness of conservative confi-
dence intervals and (2) the small selectivity (‘‘needle in a
haystack’’) effect.

There are a number of more interesting results as well.
First, the uniformity, density and Hausdorff fractal dimen-
sion (D0) estimators were all quite unstable. The best
results are obtained when the data and query characteris-
tics match the model assumptions (e.g., lower dimension-
ality, approximately hypercubic queries, more uniform
data); the density estimator is particularly hard-hit by the
poor insertion-load R-tree quality. Howev er, giv en that
these estimators simplify away nearly all characteristics of
the data set and query, wide variation in accuracy seems
inevitable. Second, the correlation fractal dimension (D2)
estimator performs quite well given that it does not look
at the data and the query sets at all. It does not perform as
well as originally reported [8], but this is to be expected
given that the queries are non-equilateral. Third, while
the index traversal estimator with bulk-loaded data gener-
ally and most consistently produces reasonable confidence
intervals (recall our ‘‘1%’’ success criterion), none of the
estimators is particularly successful on high-dimensional,
uniformly-distributed data sets.

5.2. Effectiveness of traversal limit heuristics
The previous subsection described our experiments for

a fixed, heuristic traversal limit of 12 index nodes. In
Section 3.2, we discussed the possibility of more elabo-
rate heuristics. For example, a moment’s thought would
lead one to expect a roughly geometric drop-off in the
incremental gain (decrease in confidence interval width)
from each node — as one descends to a new lev el, having
exhausted the previous level, the expected number of
index records covered by any giv en node entry drops by a
constant factor (i.e., by the fanout).

Investigation reveals that the confidence interval width
curves do tend to drop off as expected. Our prioritized
traversal algorithm, by its heuristic ordering of nodes by
uncertainty, tends to smooth out the curve; nodes that
would cause ‘‘jagged’’ or step-function behavior under

simple breadth-first search tend to be processed earlier.
Specifically, we found the confidence interval widths pro-
duced by prioritized traversal algorithm dominated those
of breadth-first traversal in all test cases. For similar rea-
sons, pseudo-ranking tends to smooth the curve as well.

We did implement and measure traversal heuristics that
detected when the decrease in confidence interval width
‘‘tailed off,’’ i.e., that stopped when the rate of change
reached a local change-point. However, we observed the
following effect: even with the smoothing factors just
described, the curves tended to haveseveral change-
points, usually corresponding to the transition from one
level to the next lower level. In the tests that use ranked
trees, the individual graphs appear almost piecewise-lin-
ear. This is not an issue for shorter trees (two or three lev-
els), but tends to cause the algorithm to stop earlier than
desired for taller trees (four levels or more). Though a
more sophisticated variant may be useful, we cannot rec-
ommend the naive tail-off heuristic for general use.

6. Related work
In this section, we briefly survey the relevant database

literature. Specifically, we discuss non-parametric selec-
tivity estimation techniques (which relate to tree traver-
sal), estimation using random sampling, and tree conden-
sation. We refer the reader to Mannino’s survey [34] for
background information about selectivity estimation; the
references given here are generally incremental with
respect to that survey. Many additional references are
given in the full paper.

Extensible estimation methods: The current state of
the art is to provide black-box user hooks for selectivity
estimation functions [28]. That is, the extender is told to
write a user-defined function that computes the selectivity
of any clause containing an instance of their user-defined
type.

Non-parametric statistics: Non-parametric density
estimation encompasses a variety of techniques. The
approaches discussed below hav e one or two of the fol-
lowing major disadvantages. First, they are difficult to
apply in a ‘‘generic’’ extensible framework because they
all require a mapping from the given data type to someD-
dimensional numeric representation. While some map-
ping is alwayspossible, a mapping into a representation
with a ‘‘nice’’ distribution (one that does not require an
inordinate amount of summary data to be approximated
with reasonable error) is necessarily domain-dependent
and may prove difficult to find — from the point of view
of the extender, this may trade one complex and unnatural
task for another. (By constrast, using index structures for
estimation takes advantage of mappings that the extender
has already created and optimized.) Second, space-



partitioning schemes require storage exponential inD.
• Model-fitting techniques. Methods based on regres-

sion, wav elets and neural nets [11, 32, 35] have been used
to summarize attribute frequency distributions. The pro-
posed techniques have some additional disadvantages.
First, like the parametric estimators discussed in this
paper, they are all point estimators and provide no interval
bounds. Second, with a few exceptions, the ability to per-
form dynamic updates of the summary data is limited.

• Histograms. Now well-established [40], conven-
tional histograms rely on space-partitioning schemes.
Various forms of indexed main-memory multidimensional
histograms have also been proposed [36]. Secondary
memory histograms and hierarchical estimation are not
considered in this work; neither are the problems of
space-partitioning.

• Index-assisted statistics. Sev eral researchers have
noted that balanced tree structures can be viewed as a
hierarchy of (approximately) equidepth histograms [3].
Others have used access methods to compute aggregate
[18] or density [25] functions. This work does not gener-
ally trade off precision against cost.

Tr ee traversal: An enormous literature exists on
heuristic tree search in artificial intelligence. Much of this
work deals with handling complexity (e.g., variable order-
ing, high levels of redundancy) that does not arise in our
context. However, the priority-based algorithm of Section
3 could be described as a type of best-first search. The
related database literature is discussed more thoroughly in
Section 3 and Appendix B; again, unlike previous work,
the methods described in this paper make the preci-
sion/cost tradeoff explicit.

Sampling: Database sampling takes many forms and
has many applications; for more information, we recom-
mend the surveys by Olken [38] and Haas [7, Sec. 9].
The most specifically-relevant index-assisted sampling lit-
erature has been summarized in Section 3.

7. Conclusions and future directions
In this paper, we hav e argued that indexing techniques

form the basis for a general and practical approach to
selectivity estimation in extensible databases. The soft-
ware base is not large and the user-defined extension
methods are not difficult to write. Most importantly, this
approach allows us to take advantage of the expertise and
development effort of third-party database extenders;
aside from random sampling, which is completely general
but relatively costly, other proposed techniques are either
specific to particular data types or require additional inte-
gration effort for non-multidimensional data types.

We hav e described why we found previously proposed
methods for index-assisted estimation to be unsatisfactory

in conjunction with generalized search trees (as opposed
to, e.g., B+-trees). We then introduced incremental traver-
sal algorithms and adaptive traversal/sampling algorithms
to address these problems.

The paper contains several additional, smaller contri-
butions. We hav e provided experimental evidence that the
traversal-based technique presented in Section 3 can pro-
vide selectivity estimates with lower error than the para-
metric estimators in the literature. (This need not have
been the case, since the technique is based on traversal of
structures designed for search rather than estimation.) We
have noted the importance of interval estimates for certain
query optimization decisions, and have shown that our
traversal technique can meet or come close to meeting our
goal of 1% error for 1%-selectivity queries in practice.
This is contrast to the proposed parametric estimators,
which provide only point estimates. Finally, we hav e
illustrated that several of the proposed parametric estima-
tors can be unstable under reasonable conditions.

There are many possible areas for additional work.
These are summarized in the full paper; perhaps the most
significant lies in the investigation of formal performance
bounds, perhaps arising from the ongoing work on the
theory of indexability [24].
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