
Data Replication in Mariposa

Je� Sidell, Paul M. Aoki, Adam Sah, Carl Staelin yMichael Stonebraker and Andrew Yu z

Department of Electrical Engineering and Computer Sciences

University of California

Berkeley, CA 94720-1776

Abstract
The Mariposa distributed data manager uses an

economic model for managing the allocation of both
storage objects and queries to servers. In this paper,
we present extensions to the economic model which
support replica management, as well as our mecha-
nisms for propagating updates among replicas. We
show how our replica control mechanism can be used
to provide consistent, although potentially stale, views
of data across many machines without expensive per-
transaction synchronization. We present a rule-based
conict resolution mechanism, which can be used to
enhance traditional time-stamp serialization. We dis-
cuss the e�ects of our replica system on query process-
ing for both read-only and read-write queries. We fur-
ther demonstrate how the replication model and mech-
anisms naturally support name service in Mariposa.

1 Introduction

In this paper we describe replica management in
the Mariposa distributed data base management sys-
tem [STON94a]. There has been considerable research
devoted to studying replica management, resulting in
a wide variety of proposed solutions. In Mariposa we
have adopted an economic framework for managing
data objects and query processing [STON94b]. This
paper describes how we propose to integrate replica
management and replica control into this framework.
In addition to describing the design of our replication
system, we discuss the impact of replication on query
optimization and query processing semantics. Finally,
we show how our replication system supports name
service without additional mechanisms.

A Mariposa system consists of a collection of sites
which provide storage, query processing, and name
service. More than one service can be provided by one
site. The goal of Mariposa is to provide the following
features:

� Scalability: Our goal is for Mariposa to scale to
10; 000 sites. This makes it necessary for Mari-
posa sites to operate autonomously and without
global synchronization. Database activities such
as class creation, updates, deletions, fragmenta-
tion and data movement must happen without
notifying any central authority.

� Fragmentation: Every Mariposa table (class) is

horizontally partitioned into a collection of frag-
ments which together store the instances of the
table. The collection of fragments can be struc-
tured (partitioned by predicate-based distribu-
tion criteria) or unstructured (partitioned ran-
domly or in round-robin order).

� Data movement: Fragments can move from one
site to another without quiescing the database.
Data movement makes it possible for Mariposa
sites to o�oad data objects, resulting in load bal-
ancing and better system throughput.

� Flexible copies: Copies can enhance data avail-
ability and provide faster query processing
through parallel execution. However, the cost of
maintaining the consistency of a large set of repli-
cas can be prohibitive if conventional techniques
(e.g., two-phase commit) are used. Mariposa pro-
vides a replica-management system that avoids
the expensive synchronization requirements of
conventional replica systems without sacri�cing
transaction serializability. Copies are at the gran-
ularity of fragments.

� Rule-based system management: The behavior
of Mariposa sites is controlled by a production
rule system, provided as part of the Rush script-
ing language [SAH94]. Rules are of the form on
event where condition do action. The rule sys-
tem is intended as a exible tool to implement
policy governing buying and selling data, pricing
for query processing, etc.

In [STON94b], we expressed query processing in
terms of the following economic framework. A user
presents a query to a broker module. Along with the
query, the user speci�es a bid curve. The bid curve
is in two dimensions, cost and delay, and speci�es the
maximum payment for a query to be answered within
a given delay. Some users will be willing to pay more
for a fast answer, resulting in a bid curve with a steep
slope. Others will be willing to wait, but have a maxi-
mumprice they are willing to pay, resulting in a atter
bid curve. The broker accepts the query and the bid
curve, constructs an initial query plan using standard
single-site query optimization techniques, and then de-
composes the resulting plan into subqueries. The bro-
ker sends out the subqueries to bidder sites, asking

them to respond with bids indicating how much they
will charge to process the subquery and how long it
will take. The bids are of the form (price, delay)
indicating that the bidder will charge a �xed price to
process the subquery and that the work will be com-
pleted within the given delay. Each bid can be thought
of as a point in the same space as the bid curve. The
broker selects a set of bids that (1) corresponds to a
set of subqueries that can be assembled into the �nal
query and (2) has an aggregate price and delay far-
thest under the bid curve. If no set of bids exists that
is under the bid curve, the query cannot be run. When
the bids have all been received, the broker noti�es the
winners and the query is processed at those sites.

In this paper, we extend our execution model in two
major ways in order to support replicas. The Mari-
posa copy management model speci�es that update
transactions performed at one site are allowed to com-
mit. Their changes are then sent to other copy holders
within a time bound. This asynchronous replication
implies that there will be some loss of consistency be-
tween copies. As seen in Figure 1, Mariposa provides
an asynchronous replication mechanism in which a re-
solver module at each site arbitrates the application
of concurrent updates at that site. The resolver is rule-
based, allowing application-level control over the res-
olution of conicting updates. Applications that wish
to see stable data must limit their access to quiesced
data that has passed through the resolver. Applica-
tions that are willing to gain concurrency by reading
unstable data that may be rolled back may do so.

This architecture has two major implications.
First, because copies are out of date by varying de-
grees, we introduce a staleness factor, indicating how
out of date a site's copy is. Second, we de�ne seman-
tics that allow applications to understand the impli-
cations of reading unquiesced data.

streams
updateupdates

quiesced data
be resolved
data yet to

update
stream

local
updates

update
streams

site 1 site 2

local
updates

local

RESOLVER

Figure 1: Asynchronous replication architecture.

The remainder of the paper is structured as follows:
In Section 2, we cover related work. Section 3 and
Section 4 present the basic replication management
and control mechanism. Section 5 presents a strategy
for query optimization and execution that generalizes
and modi�es the proposal in [STON94b]. Section 6
describes how the same replica control mechanisms

and strategies can be used for name service. Finally,
Section 7 summarizes the key points of the paper.

2 Related Work

Rather than presenting an exhaustive survey of the
extensive database and operating systems literature in
the area of data replication, in this section we focus
instead on presenting some of the major ideas on which
our model builds.

The number and placement of replicated objects af-
fects both the performance and the availability of a
distributed database. The problem of optimizing this
aspect of the physical database design is known as
replica management. Classic work on replica man-
agement concentrated on the �le allocation problem
[CHU69, DOWD82] | that is, the problem of �nd-
ing optimal static data layouts. More recent work
has been done to develop techniques that adjust the
data layout dynamically, such as learning algorithms
[WOLF92, ACHA93].

Data replication entails maintaining physical
and/or semantic consistency of the various copies.
There has also been a tremendous amount of work
on this problem, known as replica control. See
[CHEN92] for a useful overview. Classic distributed
data managers require that copies be kept fully con-
sistent. Because of this, considerable e�ort has
gone into improving the basic techniques for ensuring
this kind of consistency, such as two-phase commit
[ELAB85, SAMA93]. However, because the expense
of synchronizing updates remains relatively high, work
has also been done in constructing weak consistency
models. These models typically place bounds on one
or more divergence parameters. For example, some
systems place bounds on time (temporal divergence
control) [AGRA93] or the number of update transac-
tions (value-based divergence control) [KRIS91]. Fi-
nally, other systems focus on exible speci�cation of
divergence parameters. Both quasi-copies [ALON90]
and epsilon serializability [PU91] permit value-based
and temporal divergence control on the underlying
data. Bayou [TERR94] takes a slightly di�erent ap-
proach, providing various kinds of intuitive consis-
tency guarantees for each user \session" by controlling
data divergence as well as using information speci�c
to a session's read/write dependencies.

In contrast to these well-de�ned semantics, most
current commercial systems o�er relatively informal,
ad hoc consistency guarantees as the only alternative
to costly full consistency mechanisms. Most systems
apply updates in a transactionally consistent way for
some granularity of the database. For example, Sybase
provides transactional consistency for all data under
a single Replication Server. Oracle7 does so for single
tables. However, they do not provide correspondingly
powerful mechanisms for controlling target database
updates. This means that a transaction that accesses
replicas across the highest granularity of consistency
may see data that was valid at di�erent times. For ex-
ample, if a Sybase table F is horizontally partitioned
into F1 and F2 which are served by two di�erent Repli-
cation Servers, a site that has replicas of F1 and F2

cannot be assured that a scan of its copy of the com-
bined table F will produce a consistent result.

Although Mariposa can provide standard consis-
tency guarantees using two-phase commit, it also sup-
ports temporal divergence between replicas. Mariposa
provides consistency at the cost of greater staleness.
We provide a transactionally consistent view of the
data as of a time in the past. The services provided by
the Mariposa storage manager permit a particularly
natural kind of time-vintage/time-bounded [GARC82]
query model.

3 Economic Replica Management

This section describes replica management in Mari-
posa: the mechanism by which a Mariposa site ac-
quires, maintains and discards copies of an object.
The copy mechanism we describe provides the basis
for the discussion of read and read/write semantics in
Section 5. Acquiring and maintaining a copy may be
thought of as applying streams of updates from other
copy holders, with associated processing costs. In the
economic parlance of Mariposa, a site buys a copy
from another site and negotiates to pay for update
streams. In this section, we focus on the mechanism
used by a site to buy a copy and contract for these
update streams. We then describe how a Mariposa
site discards a copy. Finally, we turn to the problem
of splitting table fragments into smaller fragments or
coalescing fragments into larger fragments.

3.1 Acquiring and Maintaining Copies|
Update Streams

The process of buying a new copy is relatively sim-
ple. Assume a Mariposa site S1 owns the only copy of
fragment F . If another site, S2, wishes to store a copy
of F , then S2 must perform the following steps:

1. Negotiate for updates: S2 negotiates with S1 to
buy an update stream for F . This contract
speci�es an update interval T and an update
priceP . The update interval speci�es that writes
to F at S1 will be forwarded to S2 within T time
units of transaction commitment at S1. An up-
date stream contains changes only from commit-
ted transactions. In this way, S2 can be assured
that its copy of F is out of date by an amount
bounded by T plus the maximum network de-
lay plus the maximum time to install the up-
date stream. In return for the update stream,
S2 will pay S1 P dollars every T time units. See
Section 4.1 for a discussion of the mechanism by
which updates streams are generated.

2. Negotiate reverse updates: If S2 wants to write to
its copy of F, then it must also contract with S1
to accept an update stream generated at S2. In
this case, there are two update intervals: T1!2

and T2!1, which are not necessarily the same.
T1!2 is the frequency with which S1 updates S2,
and T2!1 is the converse. In this case, the price
P mentioned in step (1) above is the price paid
by S2 to S1 for S1 sending updates to S2 and for
S1 receiving updates from S2. See Section 3.1.1

for a discussion of pricing. See Section 4.2 for a
discussion of resolution of conicting updates.

3. Construct an initial copy: S2 contracts with S1 to
run the query SELECT * FROM F. S2 will install
the result of this query and begin to apply the
update stream generated by S1. If S2 is writing
its copy of F , it starts to send updates to S1 as
well.

An easy generalization of this scheme is to allow
a copy to be a select-project operation applied to a
table. We think of this as requesting a copy of a view.
In the above example, S2 would specify a �lter that
corresponds to the view and send it to S1 during step
(1) above. S1 would pass the change list through the
�lter before forwarding it to S2.

To generalize the copy mechanism, if a site Sn+1
wishes to purchase a copy of fragment F of which n
copies already exist at sites S1 : : :Sn; n > 1, steps (1)
and (2) above can be carried out between Sn+1 and
the other copy holders. In step (1), Sn+1 will negotiate
update streams with S1 : : :Sn. If Sn+1 wishes to make
writes to F , then in step (2), it can negotiate reverse
update streams with S1 : : :Sn. Step (3) is the same
regardless of the number of copy holders: the initial
copy can be constructed from one site.

During step (1), the times Ti!n+1 negotiated be-
tween site Sn+1 and the other sites should all be equal.
If one of the update intervals were greater than the
others, Sn+1's copy would always be out of date by
the amount of time speci�ed by the longer interval.
Therefore it only makes sense to have the update in-
tervals for the streams going to one site be the same.
We think of this time interval as the staleness of the
data at the site, since the quiesced data is at least that
much out of date. We denote the staleness of fragment
F at site i as St(i; F). Note that the values of St(i; F)
and St(j; F) for two sites i and j are not necessarily
equal.

If every site that buys a copy of a fragment per-
forms steps (1) and (2) above with every other copy
holder, the result will be n(n � 1) one-way update
streams. However, during step (1), site Sn+1 can ne-
gotiate an update contract with as few as one other
copy holder, Si, relying on that site to forward up-
dates from the other copy holders. The type and num-
ber of update contracts negotiated by a site will a�ect
how out of date its copy will be. For example, sup-
pose Sn+1 were to purchase an update stream from Si
alone and Si's staleness were St(i; F). Sn+1 negotiates
an update interval from Si of Ti!n+1. Sn+1's stale-
ness is St(i; F) + Ti!n+1. Forwarding in this manner
decreases the number of contracts, and therefore the
network tra�c, for read-only copies.

Step (2) above cannot be modi�ed in this way. If
Sn+1 wishes to make writes to F, it must negotiate up-
date streams with all n sites. Otherwise, Sn+1 would
a�ect how out of date other copy holders' copies were
without the copy holders' consent.

3.1.1 Update Stream Pricing

Mariposa sites share the common goal of being prof-
itable. It is our belief that by mimicking the behavior
of economic entities, acceptable system performance
and response time can be maintained in the face of
varying workloads without sacri�cing site autonomy.
An analysis of the pricing of update streams rein-
forces this belief. We �rst restrict the discussion to
one writer site with read-only copies at other sites,
then expand the analysis to include multiple writers.

Suppose site S1 owns a fragment F and another site
S2 wishes to buy a read-only copy of F , with a stream
update interval of T time units. S1 may lose a portion
of its revenue from processing queries involvingF if S2
underbids it. In order to guarantee maintenance of its
revenue stream, S1 can examine the average revenue
collected from read queries involving F during a time
period equal to T and set the update price to that
amount. S2 now pays S1 an amount equal to what S1
would have made from processing queries involving F
anyway.

In order to make a pro�t, S2 must generate more
revenue by processing queries involving F than it pays
to S1. If S1 and S2 bid on exactly the same queries,
then on average S2 must charge more than S1, since
it is already paying S1 an amount equal to S1's rev-
enue from F . Since S2 is charging more than S1, it
will only be given work if it processes queries faster
than S1, reducing user response time. If S2 does pro-
cess queries which otherwise would have gone to S1,
it will have reduced the load on S1, increasing system
throughput. If S2 has negotiated update streams so
that its staleness is less than S1's, then it can bid on
queries that S1 cannot.

If S2 does not make a pro�t from F, it may choose
to renegotiate its update contract with S1. Presum-
ably, S1 may be willing to do so, since it is processing
queries involving F as well as receiving update revenue
from S2. In this way, S1 and S2 can work iteratively
towards a balanced load on queries involving F. We
can also assume that S2 would not have requested to
buy a copy of F unless there were su�cient activity
involving F.

Now suppose S2 wants to make writes to F. S1
will calculate an update price based on read and write
queries, rather than just read queries. If there is a sig-
ni�cant number of writes, then this price will be quite
a bit higher than that for a read-only copy. Conse-
quently, S2 will have to charge a lot more for queries
involving F (whether read or write). The analysis of
read-only copies holds for read-write copies as well:
namely, S2 can only make a pro�t by processing reads
and writes faster than S1, since it is charging more,
thereby reducing user response time and potentially
increasing system throughput.

3.1.2 Monopolies and Price Control

Another issue concerns the possible refusal of S1 to en-
ter into an update contract for F or to insist on a pro-
hibitive price for it, thereby establishing a monopoly
on queries involving F . S1 could then charge exor-

bitant prices for these queries, resulting in extremely
high pro�tability. If F is involved in lots of queries, it
is natural that another site would want to buy a copy
in order to attract some of the business. There are
two factors that limit the price S1 can demand for a
copy of F :

First, a user can always buy the query SELECT *
FROM F and then periodically update this copy. Pric-
ing queries in Mariposa is complicated. However, no
matter what pricing policy is used by a site, the price
cannot exceed what users are willing to pay, as ex-
pressed in the bid curve. Since the queries used to
acquire and maintain a copy can all be performed by
a user, then collectively they set the upper bound on
what a site can charge for a copy. Put di�erently, the
receiver can always \do it manually," thereby putting
a ceiling on the price of a copy.

Second, suppose site S1 owns F and has more busi-
ness than it can handle. It will either raise its price
or its delay estimate for queries involving F until de-
mand is decreased to its capacity. S1 may be able to
collect more money by selling a copy to S2. If S1's
cost per query is Q and its price is P , then it earns
a pro�t of P � Q. If S2 has a lower cost structure
and can process queries for Q0 < Q, then it will be
desirable for S1 to sell a copy to S2. S2 will process
queries that S1 could not, either because its price or
its delay (or both) were too high. S2 will also pay S1
for its update stream. This will result in higher pro�ts
for both sites.

3.1.3 Discarding Copies

If a site no longer wishes to maintain a copy, it has a
number of options.

� drop its copy. That is, stop paying for its update
streams, delete the fragment and stop bidding on
queries involving the fragment.

� sell the copy. The site can try to sell its update
streams to someone else, presumably at a pro�t.
If so, then the seller must inform all the creators
of update streams to redirect them to the buyer.

� stop updating, That is, stop paying for its update
streams but don't delete the fragment. The frag-
ment will become more and more out of date as
updates are made at other sites. If the fragment
is split or coalesced, the fragment will essentially
become a view. This view is unlikely to be very
useful, since it is unlikely that queries over the re-
lation will correspond exactly to the view. There-
fore, doing nothing is a possible but not very ef-
fective action.

We designate one copy of each fragment to be the
master copy. We assume that all other copies can be
freely deleted, but the master copy must be retained
until sold. This will prevent the last copy of a fragment
from being deleted. In addition, the notion of a master
fragment is needed to support systematic splitting and
coalescing of fragments, a subject which we address
now.

3.2 Splitting and Coalescing Replicated
Fragments

Having discussed the means by which the creation
and deletion of new copies are controlled, we now turn
to the ways in which replication a�ects the fragmenta-
tion of a class. We discuss this under replica manage-
ment because a change in the degree of fragmentation
of one replica has an e�ect on the structure and/or
economic value of the other (replicated) collections of
fragments.

In order to make the implementation of splitting
and coalescing fragments more manageable, we as-
sume that only one site is allowed to initiate splitting
of a fragment. For simplicity, we assume that this is
the site with the master copy. This site simply splits
the fragment, thereby splitting its update streams. It
then sends the split update streams on to each other
copy. Each holder of a copy must take one of three
actions when it receives a split in an incoming update
stream:

� split its copy in a compatible way and thereby
split its update streams into two pieces. Each
such site continues to have a copy of the existing
fragments.

� drop its copy. The site ceases to participate in
replication.

� do nothing. The e�ects of failure to split a frag-
ment replica are more or less identical to those
of failing to update a fragment replica - the site
holds an increasingly out of date view.

A site can initiate coalescing of two fragments only
if it possesses both fragments and has the master
copy of each one. It then starts sending out a coa-
lesced change stream to all sites that got either change
stream before. The site which receives a coalesced
change stream can execute the same actions as for the
splitting case, with the same results. If a copy holder
only has one of the two fragments, and wishes to co-
alesce it with the other one, it can contract to buy
the missing fragment from any of the sites who have
copies.

4 Replica Control

We now turn to replica control mechanisms. In this
section, we describe the mechanisms by which objects
are physically replicated (i.e., how update streams are
generated). We then discuss how Mariposa addresses
the problem of conicts due to concurrent reads and
writes.

4.1 Replication Mechanisms
Each read-write copy accepts writes and must for-

ward the changes on to the other copy holders within
the contracted time intervals. Because write frequency
varies from site to site, as does the update interval be-
tween sites, it seems reasonable to specify three di�er-
ent update propagation mechanisms: triggers, side
�les and table scans. We propose using these mech-
anisms as indicated in Table 1.

write frequency
low high
trigger side �le table scan

Table 1: Choice of replication mechanism as a
function of write frequency.

All three techniques take advantage of certain as-
pects of the Mariposa storage system, which we briey
discuss at this time. Mariposa uses the POSTGRES
\no overwrite" storage system [STON87]. Each record
has an object identi�er (OID), a time stamp (TMIN)
at which it becomes valid and another timestamp
(TMAX) at which it ceases to be valid. An insert at
a site S causes a new record to be constructed with an
OID and TMIN �eld but not TMAX. A delete opera-
tion causes the TMAX �eld for an existing record to be
added. Lastly, an update is a delete operation fol-
lowed by an insert operation using the same OID. By
keeping old, timestamped versions, the POSTGRES
no-overwrite storage strategy makes it possible to run
read queries as of a time in the past. Postgres also
assigns a unique transaction identi�er (XID) to each
transaction, and a unique identi�er to each operator
(OP-ID). To be able to detect and correct both write-
write and read-write conicts, the update stream must
contain:

(XID, fRead-Setg, fWrite-Setg)

A read (write) set is a list of tuple/attribute iden-
ti�ers read (written) at the update site. The read
sets will contain only the tuple/attribute identi�ers.
The write sets will also contain the OP-ID and list of
operands, as well as other log entries:

(OID, OLD-VALUE, NEW-VALUE, OP-ID,
OPERAND-LIST, TMIN, TMAX)

In Section 4.2 we present examples of both write-
write and read-write conicts and their resolution.

The �rst mechanism by which update streams are
generated, triggers, takes advantage of the Postgres
rule system [STON90]. A site with a copy of F using
triggers as the update mechanism would install the
rule:

CREATE RULE copyF AS ON UPDATE TO F DO
[INSERT INTO F1 SELECT current.*; ...];

Triggers are appropriate for sites with very low
write frequency, since each update results in a rule �r-
ing and network communication with the other copy
holders.

If there are relatively few writes, then a side �le
approach is preferable. Speci�cally, install a trigger
at S1 that makes the correct notations in a side �le
F-SF every time F is written. This notation includes
the values for TMIN, TMAX, OID, etc. Now have S1
run the following query every T time units, and send
the result to S2:

SELECT * FROM F-SF

When the copy has been safely installed at S2, S1
can delete the records in F-SF inserted since the last
update:

DELETE FROM F-SF WHERE TMIN <= (last-update)

This scheme will forward the contents of every com-
mitted record within T time units. Of course, we need
to \fake" the receiving site into installing records with
pre-existing TMIN, TMAX, etc. This can easily be
done with a carefully coded user de�ned function.

If there is high write volume, then we might want
to avoid the ine�ciency caused by the trigger system
making a copy of each write in F-SF. Another alter-
native is for S2 to wake up after each update interval
and run the query

SELECT * FROM F [now - T,]

which will �nd all the changed records with a sin-
gle scan. This will avoid copying write records to F-SF
but will require reading the entire table (ignoring in-
dexing). If the update interval is long enough, this
will be an attractive alternative. Roughly, the cost of
the side �le approach during each update interval, T ,
will be dominated by the cost of writes to F-SF:

costsidefile =
costwrite � nWrites

T

The cost of the sequential scan during an update
interval is the cost of a read multiplied by the number
of pages in the relation (ignoring indexing):

costscan =
costread � pages

T

Combining these two expressions, we arrive at a
write threshold:

write threshold =
costread � pages

costwrite

We now have the following decision criteria for our
replication mechanisms. If the update rate is ex-
tremely low, one can avoid the overhead of auxiliary
side �les and table scans by using the trigger mecha-
nism. When the number of writes during the update
interval is below the write threshold, it is more e�cient
to use the side �le mechanism for updating. Otherwise
it is better to use a sequential scan of the table.

4.2 Conict Resolution
If more than one site is allowed to write copies of

a fragment, then the possibility of conicts is intro-
duced. In Mariposa, each copy is a version of an
object, and processing the update stream is equiva-
lent to a version merge. If there are multiple copies
of a fragment, each site must perform a version merge
operation upon receiving an update stream from an-
other site. Mariposa provides rule-based conict res-
olution. Rules may be de�ned to provide traditional
timestamp-order serialization. However, the Mariposa
rule system allows a more exible resolution of update

conicts which may better reect the needs of the un-
derlying application.

Update conict events specify the conicting sites
and the fragment. Conditions can specify the scope of
the particular rule, thereby providing �ne- or coarse-
grained control over conict resolution. For example,
an event could be UPDATE-CONFLICT(S1; S2; F). A
condition such as (EMP.name = 'Bob') has narrow
scope|one tuple, while an empty condition would
broaden the scope to include all update conicts be-
tween S1 and S2. The action clause could specify that
one or the other transaction be rolled back, in e�ect
declaring one site or one user the winner. Or it could
specify that both transactions be rolled back and mail
sent to a responsible party. Rules can also be used to
enhance timestamp resolution, for example by noti-
fying two salespeople who have ordered the last of an
item, and automatically generating a back-order letter
to be sent to the customer.

In the examples that follow, sites S1 and S2 each
have a copy of fragment F . Both sites can perform
updates to F . Update streams have been negotiated
between the two sites. Each site has an associated
staleness, St(i; F) as discussed in Section 3.1. We de-
�ne two read/write transactions, X1 and X2 occurring
at sites S1 and S2, respectively. Since there are two
writers, there is a possibility of conicting updates.
The update streams described in Section 4.1 contain
enough data for each site to detect both write-write
and read-write conicts. A write-write conict occurs
when the write set of one transaction and the write
set of another transaction have a non-empty intersec-
tion. A read-write conict occurs when the read set of
one transaction has a non-empty intersection with the
write set of another. As mentioned in Section 4.1, in
order to detect both write-write and read-write update
conicts, it is necessary to include the read set and
write set of every transaction in the update stream. To
detect and correct write-write conicts requires only
the write set. In Mariposa, we propose to permit turn-
ing o� read-write conict detection and correction. If
read-write conict detection is turned o� for one frag-
ment, it will be turned o� for all copies of that frag-
ment. This will provide enhanced system performance
at the risk of creating an inconsistent database state.

4.2.1 Examples of Conict Resolution

The following two transactions, X1 and X2, are an
example of a write-write conict if Bob works in Ac-
counting:

X1: UPDATE emp SET salary=15000
WHERE dept = 'Accounting';

X2: UPDATE emp SET salary=12000
WHERE name = 'Bob';

The update streams for X1 and X2 would contain the
following information for the tuple corresponding to
Bob, if read-write conict detection were turned o�:

X1: (XID1, fOIDBob, salaryg, 10000, 15000,

write, 15000, TMIN1, TMAX1)

X2: (XID2, fOIDBob, salaryg, 10000, 12000,

write, 12000, TMIN2, TMAX2)

The following rule will resolve the conict in times-
tamp order:

CREATE RULE resolve1;2 AS
ON CONFLICT(S1; S2; F) DO
[
INSERT X1 INTO F AS OF TIME TMIN1

INSERT X2 INTO F AS OF TIME TMIN2

];

If the user determined that updates to salaries made
by senior management override those made by depart-
ment managers, the following rule would resolve the
conicting updates noted above correctly:

CREATE RULE resolve1;2 AS
ON CONFLICT(S1; S2; F) DO
[
if (USER2 =MANAGER�(USER1))
INSERT X2 INTO F AS OF TIME TMIN2

else
INSERT X1 INTO F AS OF TIME TMIN1

];

The two transactions below are an example of a
read-write conict, if Bob works in Accounting:

X1: UPDATE emp SET salary=salary*1.1
WHERE dept = 'Accounting';

X2: UPDATE emp SET salary=salary*1.5
WHERE name = 'Bob';

The update streams for Bob's tuple would look like:

X1: (XID1, fOIDBob, dept, salaryg, fOIDBob, salaryg,

10000, 11000, multiply, 1.1, TMIN1, TMAX1)

X2: (XID2, fOIDBob, name, salaryg, fOIDBob, salaryg,

10000, 15000, multiply, 1.5, TMIN2, TMAX2)

Notice that salary is in both the read and write
sets of each transaction. The following rule would seri-
alize the transactions correctly, regardless of the order
of arrival of the update streams:

CREATE RULE resolve1;2 AS

ON CONFLICT(S1 ; S2; F) DO

[

if (TMIN1 < TMIN2)

INSERT X1 INTO F AS OF TIME TMIN1

if (READ � SET1 \WRITE � SET2 6= ;)

re-run query over READ � SET1 [WRITE� SET2

else

INSERT X1 INTO F AS OF TIME TMIN1

];

Using rules to perform conict resolution is not
without its complications. Clearly, all the rules deal-
ing with update conicts to a relation must be the

same at all sites that hold copies. Furthermore, the
rules must be commutative|that is, the outcome of
the rules must be the same regardless of the order
in which they are �red. Finally, the complexity of
rule systems presents a problem: Rules could conict,
for example, if S1 and S2 make conicting updates
to EMP and DEPT and there is a rule for EMP fa-
voring S1, while the rule for DEPT favors S2. Rules
could violate transactional consistency: if S1 and S2
make conicting updates to EMP and DEPT, which
are stored at di�erent sites, say S3 and S4, there is
presently no mechanism to guarantee that the rules
will result in a consistent database state. This is a
subject for further study.

5 Query Processing

The non-transactional replication mechanisms de-
scribed above will lead to divergence of the contents
of fragment copies. In this section, we elaborate on
this divergence and describe the e�ect it has on our
economic query processing model. We �rst discuss
the e�ects of temporal divergence|di�erent data stal-
enesses at di�erent sites|on our original query pro-
cessing algorithms. Finally, we show how we modify
traditional transactional semantics in order to increase
the ability of applications to read and write replicated
data that may not be consistent between copies.

5.1 Time Validity of Copies
As de�ned in Section 4.1,the staleness of a fragment

F at a site Si is equal to the update interval S1 has
negotiated with the other update sites. That is, after
a time period equal to St(i; F) has elapsed, Si has
received and resolved all updates to F that happened
at time now�St(i; F) or earlier. To guarantee that it
is reading consistent, stable data, a query to F at Si
must be run no later than St(i; F). That is, a query

SELECT ... FROM F
becomes

SELECT ... FROM F [now � St(i; F)]

or a similar query \as of" a time earlier than now�
St(i; F) Otherwise, a query may give an answer based
on data that is not valid, since potential conicts from
update sites have not been resolved.

5.2 Implications of Time Validity on
Read Query Processing

Figure 2 shows how the broker in the original Mari-
posa model decided which bids to accept. Assume that
we have a query plan that has been fragmented into
two subqueries, A and B, that must be run sequen-
tially. In Figure 2(a), the broker has received two bids
for A and one bid for B. Figure 2(b) shows that the
broker can construct two sets of bids that answer the
complete query (i.e., it can combine B1 with either
A1 or A2). However, when the two bids making up
bid set 2 are added together, the sum is farther under
the bid curve than that of bid set 1. In this case, the
broker would select bid set 2, even though bid set 2 is
expected to be completed more slowly than bid set 1.

Because of the staleness of copies, we have
expanded this model by adding staleness as the

8

1

2

3

4

5

6

7

8

7

6

5

4

3

2

1

subquery A

(1,1)

(a)
delay1 2 3 4 5 6 7 8

cost

bid curve

bid A1 for subquery A
bid A2 for subquery A
bid B1 for subquery B

(3,1)

(2,3)

(b)
delay1 2 3 4 5 6 7 8

cost

bid set 1

aggregate price/delay for...
bid set 1
bid set 2

(3,4)

bid set 2

(4,2)

sort

join

subquery B

Figure 2: Assembling query plans using 2-D bid
curves.

third bid parameter. The user speci�es the
bid curve by providing three non-collinear points
maxBid1;maxBid2;maxBid3, as well as three values
maxCost, maxDelay, maxStaleness. The �rst three
points are representative bids that de�ne a plane limit-
ing the space of acceptable bids. This plane is shown
in Figure 3(a). Acceptable bids are points that fall
underneath the plane and whose values for cost, de-
lay and staleness are less than the maximum values
speci�ed. The space of acceptable bids is a convex
polyhedron with up to seven faces, as shown in Fig-
ure 3(b). The user also provides a boolean parameter
resolved. If resolved is true, then the user requires
that the data used to process the query be resolved.
If resolved is false, then the user is willing to run the
query over unresolved data, which may be rolled back.

delay

(a) (b)
staleness

maxBid2

maxBid1

maxBid3

cost cost

maxCost

maxDelay

maxStaleness

staleness

delay

Figure 3: Determining the acceptable bid space.

Processing sites can bid based on the following cri-
teria: if resolved is false, any site can bid. If resolved
is true:

if maxStalenessuser < St(i; F) Si cannot bid
if maxStalenessuser � St(i; F) Si can bid

Users can have a low tolerance for delay or stale-
ness, in which case they should expect to pay more
money for answers. Increased staleness will allow ad-
ditional sites to bid on their queries and presumably
improve the price. Increased delay will allow queries to
run more slowly and perhaps improve the price. The
job of the Mariposa broker is to solve the query as far
under this bid curve as possible. The broker begins
by sending out requests for bids (RFB's) to prospec-
tive bidder sites. Each RFB includes maxStaleness

and resolved. Each bidder site responds if it can bid.
When the broker receives bids, it tries to select the
group of bids farthest under the bid curve.

Each bid is a point in 3-space. A set of bids, there-
fore, is also a point in 3-space, the result of adding to-
gether the price values, and taking the max over the
delay and staleness values, of the constituent bids.
Although the greedy algorithm shown below will not
always give the optimal solution, we believe it will
work well in practice. If the user has set resolved to
false, then a simpler algorithm which only considers
price and delay can be used.

�max = 0

for i = 1 to nSubQueries

�i:price = 0

�i:delay =1

�i:staleness =1

for each bid, Bi(1 � i � nSubQueries) do

pricetotal = 0

for k = 1 to nSubQueries

if k = i

pricetotal = pricetotal +Bi:price

else

pricetotal = pricetotal + �i:price

delaymax = max(maxk(�k:delay); Bi:delay);

1 � k � nSubQueries; k 6= i

stalenessmax =

max(maxk(�k:staleness); Bi:staleness);

1 � k � nSubQueries; k 6= i

�0
= �(pricetotal; delaymax; stalenessmax)

if j�0j > j�maxj

�i = Bi

where:

�() = distance of point to bid curve

�max = distance of best bid so far from bid curve

nSubQueries = number of subqueries for which bids are being received

�i = best bid so far for subquery i

Once a broker has selected a group of processing
sites, it makes bid awards to those sites. If a user has
set resolved to true, then a query that is processed
at more than one site must be run as of time now �
maxStaleBid, as calculated in the above algorithm, at
all the sites. If resolved is false, then each processing
site must perform its subquery as of time now.

Recall that each bidder that bids on a query for
which the user has speci�ed transactional consistency
must have a value of St(i; F) that is less than that
speci�ed by the user in the bid curve or the site would
not have bid. Therefore, every processing site that
responds is able to run the query. However, this al-
gorithm may err on the side of caution. Suppose the
site with the largest value of St(i; F) doesn't process
its part of the query until the last step of the query.
The query could possibly be run as of a more recent
time than now �maxStaleBid.

One possible solution would be for the broker to use
the delay estimates speci�ed by the processing sites
and calculate the maximum staleness as of the time
a site would start processing its stage of the query,

not as of the time the bid awards were sent out. This
approach, while intuitively appealing, is probably im-
practical, since it depends on extremely accurate delay
estimates from the processing sites.

Another approach is for the sites to keep track of
the most stale tuple accessed during query processing.
While this approach will give a more stale answer in
some cases than the previous one would, it does not
depend on making extremely accurate delay estimates,
and is therefore much more practical.

5.3 Data Visibility for Read-Write Trans-
actions

The conict resolution technique described in Sec-
tion 4.2 means that the e�ects of a transaction on a
fragment that has multiple copies are not permanent
until after the staleness period has passed. In this
section, we consider the e�ects of this conict resolu-
tion strategy on update transactions. Unlike read-only
transactions, update transactions must make their
writes as of time \now." Without locking all copies
of a fragment, there will always be the possibility of
two writes conicting with one another. This leads
to the question of whether unresolved writes should
be made visible within a read-write transaction, and
to other read-write transactions. We propose to al-
low a user to read his own unresolved writes within a
transaction, but not read those of other transactions.

As noted in Section 3, a copy of a fragment at site
Si is resolved within time St(i; F). If a transaction
writes a value x and then uses the updated value in
subsequent operations, there is a chance that another
transaction Sj will also write x and be serialized before
Si, causing Si to be re-run with the value of x written
by Sj . However, allowing a transaction to read its own
writes does not a�ect the probability of rollback. Nor
does it increase the amount of bookkeeping required
to roll it back, or the complexity of the resolver. More-
over, it is a feature that users are unlikely to be willing
to live without.

Allowing a read-write transaction to see the e�ects
of other update transactions' uncommitted writes
would slightly decrease the probability of rollback, but
at the cost of excessive bookkeeping. By seeing unre-
solved writes of n other transactions, an update trans-
action would decrease the number of possible conict-
ing updaters by n. However, in order to remain trans-
actionally consistent, a transaction would have to run
at exactly the sites that ran the transactions whose
writes it is reading. For example, say the EMP ta-
ble is at three sites, S1:::3 and the DEPT relation is
at sites S4 and S5. Transactions X1 and X2 update
both relations. If transaction X1 updates EMP at site
S1 and DEPT at site S4, then if X2 sees X1's unre-
solved updates, it must run at sites S1 and S4 also.
Not only is keeping track of this information a book-
keeping nightmare, but this approach constrains the
Mariposa execution model by restricting the sites at
which a transaction can run.

The approach described above provides decreased
response time, allowing a transaction to commit and
return control to the application, but at the expense of
being able to see the e�ects of a transaction until a re-

solver has run. We feel that in many cases this will be
an attractive option compared to two-phase commit,
which is e�ectively the converse. Two-phase commit
sacri�ces response time for transactional consistency
and serializability.

6 Name Service

In Mariposa there are one or more name servers,
whose job is to maintain a data base of records of the
form:

(table-name, fragment-locations, other-information)

A site contacts a name server if it needs information
on a table which is not present at its site. The name
server responds with parsing, optimization and loca-
tion information. There can be as many name servers
as necessary, and each can manage only some spe-
ci�c part of the entire name space. For example, one
name server might focus on personnel data, another
on product data, etc.

In a large network it is prohibitively expensive to
require name servers to be transactionally consistent
with the data they are locating. Doing so would re-
quire that every site send a message to every name
service every time it created, dropped or moved a frag-
ment. Hence, the originalMariposa design [STON94a]
assumed that name servers could have a speci�ed
quality-of-service, which was the degree of staleness
they maintained. Name service therefore �ts very nat-
urally into the consistency model described in the pre-
vious sections.

To implement this notion of name service is
straightforward on top of the replica management sys-
tem we have presented. Speci�cally, each Mariposa
site has a TABLES table and a COLUMNS table that
form part of the system catalogs at each site. In ad-
dition, there are tables for index, type, function and
inheritance information. A name server comes into
existence and then negotiates with some collection of
Mariposa sites to make a replica of a speci�c view on
each local system catalog that contains objects of in-
terest to the name server. The name service data base
is then the union of these views. Moreover, the name
server can specify the quality of service that it will
support by setting up appropriate contracts for these
replicas. The name server responds to ordinary queries
to this union view using the normal Mariposa query
mechanism. As such, there is essentially no custom
code required to set up a name service; it is merely a
general purpose Mariposa site managing a particular
kind of replica.

If an object is sold, and thereby moved from one site
to another, then the name servers are alerted within
the appropriate delays. If a broker receives out of date
information and subsequently sends a request for bid
to a site which has recently sold the fragment to a
second site, then the selling site can respond in one of
4 ways:

� no bid; object not here.

� try to subcontract the query to the receiving site.

� forward the request for bid on to the receiving
site.

� keep the sold object around for a little while as it
grows increasingly out of date. The seller can bid
on queries whose range can be satis�ed.

7 Conclusions

In this paper, we have shown how the economic
mechanisms described in [STON94b] can be extended
to support replicated fragments. Replica management
falls neatly into the economic model. Sites buy and
sell copies of fragments in response to changing ac-
tivity. We have also de�ned replica control in terms
of the economic model. We have described the mech-
anisms by which update streams are generated. We
went on to describe a exible rule-based conict reso-
lution mechanism, which can be used to enhance tra-
ditional timestamp based resolution. We described
the e�ect of asynchronous replication management on
query processing. Our model now accounts for stal-
eness as well as price and delay. We described how
read transactions can be processed to produce a con-
sistent, stable view of the database by processing the
queries as of a time in the past, once conicting up-
dates have been resolved. We place data visibility re-
strictions on read-write transactions, allowing a trans-
action to see its own writes within the transaction, but
not the writes of other transactions. We believe this
approach complements traditional two-phase commit.
Finally, we have demonstrated how the Mariposa in-
ternal name service is a natural application of our
replication scheme.

8 Acknowledgements

Sunita Sarawagi and Avi Pfe�er provided a great
deal of useful input and criticism during this work.
Rex Winterbottom and Robert Patrick have con-
tributed to the Mariposa implementation.

References

[ACHA93] S. Acharya and S. B. Zdonik. An e�cient

scheme for dynamic data replication. Technical Re-

port CS-93-43, Brown University, Providence, RI,
Sept. 1993.

[AGRA93] D. Agrawal and S. Sengupta. Modular synchro-

nization in distributed, multiversion databases: Ver-
sion control and concurrency control. IEEE Trans. on

Knowledge and Data Eng., 5(1):126{137, Feb. 1993.

[ALON90] R. Alonso, D. Barbara, and H. Garcia-Molina.

Data caching issues in an informational retrieval sys-

tem. ACM Trans. on Database Sys., 15(3):359{384,

Sept. 1990.

[CHEN92] S.-W. Chen and C. Pu. A structural classi�ca-

tion of integrated replica control mechanisms. Techni-

cal Report CUCS-006-92, Columbia Univ., New York,

NY, 1992.

[CHU69] W. W. Chu. Optimal �le allocation in a multiple
computer system. IEEE Trans. on Computers, C-

18(10):885{889, Oct. 1969.

[DOWD82] L. W. Dowdy and D. V. Foster. Comparative
models of the �le assignment problem. Computing

Surveys, 14(2):287{313, June 1982.

[ELAB85] A. El Abbadi, D. Skeen, and F. Cristian. An

e�cient, fault-tolerant protocol for replicated data
management. Proc. 4th ACM SIGACT-SIGMOD

Conf. on Principles of Database Sys., pages 215{228,

Mar. 1985.

[GARC82] H. Garcia-Molina and G. Wiederhold. Read-

only transactions in a distributed database. ACM
Trans. on Database Sys., 7(2):209{234, June 1982.

[KRIS91] N. Krishnakumar and A. J. Bernstein. Bounded
ignorance in replicated systems. Proc. 10th ACM

SIGACT-SIGMOD Conf. on Principles of Database

Sys., pages 63{74, May 1991.

[PU91] C. Pu and A. Le�. Replica control in distributed

systems: An asynchronous approach. Proc. 1991
ACM SIGMOD Conf. on Management of Data, pages

377{386, May 1991.

[SAH94] A. Sah, J. Blow, and B. Dennis. An introduction

to the Rush language. Proc. 1994 Tcl Conf. (Tcl'94),
pages 105{116, June 1994.

[SAMA93] G. Samaras, K. Britton, A. Citron, and C. Mo-
han. Two-phase commit optimizations and tradeo�s

in the commercial environment. Proc. 9th Int. Conf.

on Data Engineering, pages 520{529, Apr. 1993.

[STON87] M. Stonebraker. The design of the POSTGRES

storage system. Proc. 13th Int. Conf on Very Large
Data Bases, pages 289{300, Sept. 1987.

[STON94a] M. Stonebraker, P. M. Aoki, R. Devine,
W. Litwin, and M. Olson. Mariposa: A new archi-

tecture for distributed data. Proc. 10th Int. Conf. on

Data Engineering, pages 54{65, Feb. 1994.

[STON94b] M. Stonebraker, R. Devine, M. Kornacker,
W. Litwin, A. Pfe�er, and C. Staelin. An economic

paradigm for query processing and data migration in

Mariposa. Proc. 3rd Int. Symp. on Parallel and Dis-
tributed Info. Sys., pages 58{67, Sept. 1994.

[STON90] M. Stonebraker, A. Jhingran, J. Goh, and
S. Potamianos. On rules, procedures, caching and

views in data base systems. Proc. 1990 ACM SIG-

MOD Conf. on Management of Data, pages 281{290,
June 1990.

[TERR94] D. B. Terry, A. J. Demers, K. Petersen, M. J.

Spreitzer, M. M. Theimer, and B. B. Welch. Ses-

sion guarantees for weakly consistent replicated data.

Proc. 3rd Int. Symp. on Parallel and Distributed Info.
Sys., pages 140{149, Sept. 1994.

[WOLF92] O. Wolfson and S. Jajodia. An algorithm for

dynamic data distribution. Proc. 2nd Wksp. on the

Management of Replicated Data, pages 62{65, Nov.

1992.

