
Writing Programs for the
Harland Property Store

The Harland Group
harland-support@parc.xerox.com

October 5, 2000

Release: har23

Computer Science Laboratory
Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto
CA 94304
1

2

3

Contents

How to Use this Document . 5

Introduction: Bantam/Harland Concepts . 6

Writing A Harland Program . 11

Technical Details . 22

Appendix I: Release Notes for har23 . 25

Appendix II: Glossary . 30

Appendix III: Release History . 31

Appendix IV: License . 32

4

t are

ts and

ly valu-
How to Use this Document

This document accompanies an alpha release of the research system Harland.

The body of the document is a guide to writing programs that use Harland. It documents features tha

supported and (at least intended to be) functional.

We are very interested in receiving feedback from Harland users. We are happy to receive bug repor

feature suggestions as well as reports of how you are using Harland and which features are particular

able. Please send comments by email to harland-support@parc.xerox.com.
5

. It is

the full

antam;

rch,

ta for all

t hier-

rding to

both

s allow

) and

d to

l name

ace of

llection

e

 homo-

ava seri-

ta

ems

s of the

ecifies

nge to

g

cted use
Introduction: Bantam/Harland
Concepts

The purpose of this document is to help you get started writing programs that use the Harland library

intended to be tutorial rather than complete. The on-line JavaDoc should be used as a reference for

API. Note that the API itself goes by the name “Bantam” and so uses the Java package com.xerox.b

Harland is the name of both the primary implementation and the research project.

What is Harland?
Harland is a persistent document storage library for Java programs. It provides facilities to store, sea

retrieve and manage a variety of documents. Harland documents can be used to store and manage da

sorts of application objects. Harland ismiddleware, that is, it fits between existing database/filing compo-

nents and applications, adding functionality.

The organizing principle around which Harland is arranged is the use ofdocument propertieswith schemas.

Harland allows programmers to organize persistent document objects not just in terms of containmen

archies as in most document management systems (file systems, email browsers, etc.), but also acco

thepropertiesof the documents. A document can have any number of properties, and Harland provides

fast searching over the property space and collections for organization based on containment. Schema

programmers to impose some constraints on properties that Harland will enforce (for program stability

exploit (to enhance efficiency).

Properties are simple name/value pairs. Names are merely text strings and no interpretation is applie

them, although programmers are encouraged to use conventions to reduce the possibility of accidenta

collisions between different applications or parts of applications. Every document has a single namesp

properties. In general, there may be more than one value associated with each property name. The co

of values of a single property is ahomogeneous bag. It is a bag because it preserves multiple values of th

same Java type keeping duplicates distinct, but not preserving any ordering among those values. It is

geneous because all elements must be of the same type. Harland is capable of storing values of any J

alizable object type, but programmers arestrongly encouraged to restrict themselves to standard Java da

types such as Integer and Date, for efficiency and smooth evolution free from SerialVersionUID probl1.

Schemas are named groups of property constraints. Each constraint specifies the Java type that value

property may have, along with the number of values that the property may have. A constraint also sp

whether the property is optional for this schema. Schemas may be selectivelyenforced on a document by

document basis. When a schema is enforced on a particular document, Harland will not permit any cha

the properties of the document that would cause it to violate the schema constraints, such as clearin

1.See the release notes for a parameter you can set during development to have Harland catch any unexpe
of application serializable values.
6

to a

nts at

n docu-

y share

chema

ete in

e need

s their

ses in

ental

ter chap-

ments

content

erties.

t to the

or

r

lar col-

oge-

y the

rland

o it

operty

hema
(removing) a required property, setting a property value of the wrong type, or adding a second value

property that is restricted to a single value. Harland keeps a persistent record of all schemas in use.

A key feature of Harland is its flexibility. Property values can be added to and removed from docume

any time as long as schema constraints are not violated. Schemas may be enforced or unenforced o

ments at any time, and new schemas may be introduced to the system and used at any time even if the

properties with existing schemas as long as constraint definitions do not conflict. We plan to permit s

evolution at any time as long as no conflicts are introduced, though this functionality may not be compl

the release you are using. All of these changes may be made by applications while running, without th

to shut down and restart or to perform external manipulations on the database.

For the rest of this document, we will be concerned with how to develop programs that use Harland a

persistent associative storage library.

To begin our exploration of Bantam/Harland programming, we’ll explore some of the core object clas

the Bantam API and several important issues for application structure. We’ve tried to keep to fundam

classes and concepts here, so discussion of some very important technical details is deferred to a la

ter.

The Architecture of Harland Programs

Documents, Collections and Repositories
The primary entities manipulated in Bantam/Harland areDocuments. Documents, in our terminology, are

objects with properties, which may or may not have content, and may or may not have members. Docu

with members are calledcollections (or CollectionDocuments); they are similar to traditional folders or file

directories. Documents with content are calledContentDocuments, and are similar to traditional files. Har-

land can store content in the same database it uses for property values (the default) or can support

stored elsewhere. External systems storing content are calledrepositories; the local file system is the only

example presently implemented. The default repository for content is theinternal repository sharing the

database that Harland uses for property values.

A document with no content and no members is just aDocument. Although it has few of the facets we would

normally associate with a document, it retains a stable and unique identity and can accumulate prop

Single and Multiple Values
In general, properties can have multiple values and the meaning of operations is defined with respec

general case of multiple values. The general case interfaces emphasize this by the stringMulti in their

method names, e.g.getMultiValues() . Methods that get or set multiple values at once either return

take objects of classjava.util.Collection . These objects are treated as temporary containers fo

passing the values back and forth. Harland will not preserve either the class or semantics of a particu

lection handed to it; it will merely extract and preserve the individual values according to its own hom

neous bag semantics. Similarly, when Harland returns a collection, no manipulation of that collection b

application has any effect upon the values Harland is persistently storing. Only direct API calls into Ha

can change the set of values of a property.

Naturally, the case of properties that have just one value is an important and common special case, s

receives some special support. A schema constraint may limit the number of values of a particular pr

to one, which allows an application to count on finding only one value on documents that have the sc

enforced. For such situations, convenience interfaces are provided that deal with just a single value:get-

PropertyValue() andsetPropertyValue() . These interfaces will throw an exception if they are
7

op-

nt at all

hat are

the

ucted by

ter-

ement.

ve par-

eturn a

ents

 and no

ough

ion, as

a

 a

o have

ate the

s in the

n the fly.

tion, a

umber

uired

e a

se it to

docu-

u have

it

t. You

ments
not used in asingle-valued context, which is the context of a property and document where either the pr

erty is constrained to a single value by an enforced schema, or the property has no schema constrai

and has at most one value at the time of the call. Any application that needs to operate on properties t

unconstrained should use the general, multivalued interfaces.

A propertyexists on a document if it has at least one value. Regardless of the enforced constraints or

method used, removing a property and causing it to have zero values are exactly equivalent.

Collections and Queries
A query is an object that represents a search over the property space. Query objects must be constr

calling methods of theQueryFactory obtained from the Storage object. Harland does not have any ex

nal query language to allow you to specify queries as strings, though this is a possible future enhanc

Queries are typically tests for the presence of a named property, or for documents whose properties ha

ticular values or for documents that have a particular schema enforced. A query can be evaluated to r

list of documents that match the query.

A collection is a type of document which, in addition to having properties, can also contain other docum

(including other collections). Collections have the semantics of a set: documents occur at most once

ordering is preserved. Retrieval of members is through a list which imposes an arbitrary ordering. Alth

you may see versions of the Bantam API that allow for a query to define the membership of a collect

of this writing Harland does not support queries in collections.

Schemas
A schema is a named definition of a group of properties that will be used together. Typically, a schem

describes the properties that hold the data for a particularrole that a document may play within an applica-

tion. For example, we might decide that a “To-do list item” is characterized by a name, a priority, and

description, and we can write a schema that defines a property for each piece of data. When we wish t

a document object play the role of such an item within our application, we can ask Harland to associ

schema. Harland allows any number of schemas to be associated with a document and allows change

set of associated schemas at any time, so a document can play multiple roles and change its roles o

Schemas define a set of constraints, and the association of a schema with a document is calledenforcement,

because Harland will enforce the constraints. Each individual property definition, called aFieldDescriptor,

indicates whether the property is required or optional on documents with the schema enforced. In addi

FieldDescriptor specifies the Java object type that values of the property must have and specifies the n

of values that is permissible. Harland will not permit a schema to be enforced on a document if any req

property is missing or if the value(s) of any schema property violate type or number constraints. Onc

schema is enforced, Harland will not permit any change to the document’s properties that would cau

violate the schema. The requirement to have values of certain properties applies only to the specific

ments that have the schema enforced. Harland enforces type constraints more broadly however. If yo

enforced on any document a schema that specifies that “name.size ” must have anInteger value then

Harland will not allow aString value for “name.size ” on any document, regardless of whether or not

has the schema enforced.

The fact that a schema is enforced on a document is itself a kind of special property of the documen

can find out if a particular schema is enforced by callingisEnforced() on the document object, and you

can query for documents that have a particular schema enforced.

If a document satisfies the constraints of a schema, then it is said toconform to the schema whether or not

the schema is enforced. You can ask a document about conformance and query for conforming docu
8

re distin-

es it.

ss.

t func-

ned

nal

e term

le users

d to be

name.

 or

not

re no

func-

 be

 same

or that

such as

ultiple

kely to

server

assword),

ser

This
nforma-

t has no
lesys-

explic-
ount is
just as you can ask and query about enforcement. The concepts of enforcement and conformance a

guished in the API, and you should be careful to choose the right one.

Schemas are typically defined in a stylized Java class definition that inherits fromcom.xerox.ban-

tam.Schema . The unique schema name in this case is exactly the name of the Java class that defin

Information from the schema definition that is required by Harland is obtained by introspecting the cla

This arrangement for defining schemas has the advantage of automatically creating Java objects tha

tion as constants for referencing properties within an application program. Schemas may also be defi

dynamically. There is no external language that will allow you to define a schema with a String.

Databases, User Spaces, and Instances
Harland stores all property values, schema records, and internal bookkeeping information in a relatio

database. By default, it also stores document content in the database. To avoid confusion, we use th

database exclusively to refer to the relational database that provides the persistent store for Harland.

In almost every deployment of Harland, however, there is a need to share one database among multip

or applications that must not have their documents intermingled. For example, Bob and Sue may nee

able to work independently yet share a single installation of Oracle. Harland uses the concept of auser to

partition data stored within the same database. Auser space is one complete set of documents and related

metadata that is associated with one user name and independent of the spaces for every other user

An instance is one Harland Storage object providing access to a particular user space. If we start two

more application processes using Harland to access the same user space, we say that there aremultiple iden-

tical instancesof Harland running. This is a situation that must be carefully avoided, because Harland is

yet capable of coordinating the actions of multiple identical instances on the database so that there a

conflicts and no cases of data corruption. Our plan is to improve Harland so that multiple instances can

tion properly together, but that is future work.

The limitation on multiple instances places restrictions on the form of application parallelism that can

made to work with Harland. If you must have separate Java Virtual Machines (JVMs) that access the

user space of documents, you must create a server component that runs the sole Harland instance f

space and is accessed by other application processes through some mechanism of your own choosing

HTTP, Java RMI, or CORBA. On the other hand, Harland supports access to the same instance by m

threads within a single JVM, as described later.

Harland does not support access to more than one user space from a single JVM. This limitation is li

be removed in the future.

A Harland user space is defined by three things: the database in which the data is stored (identified by

name and instance name/port number), the database login used to access the data (username and p

and the Harland user name. It is the Harland user name that allows Harland to distinguish different u

spaces stored in the same database with the same login.

So when a Harland program runs, there are three different user names involved:

• The database account that is used by Harland to establish a connection to the database (login).
account must be created and allocated space by the database administrator. The database login i
tion is supplied to Harland through Java system properties as documented in the release notes.
• The host operating system account under which the Harland process executes. The host accoun
significance for Harland if document content is stored in the database. If content is stored in the fi
tem, the operating system account becomes relevant as the owner of the content files.
• The Harland user name that identifies a user space of documents. The Harland user name may be
itly specified through a Java system property. Otherwise, the name of the host operating system acc
9

ts user
plic-

ny

 data

ing data-

lication

ty

evel

pers and

atabase

ord but
used as the Harland user name, avoiding accidental collisions. Harland does not accept “root” as i
name, so if you are running a Harland application under a root account on Unix or Linux you must ex
itly specify the Harland user name.

Note that Harland’s isolation of user spaces prevents unintended interference but does not provide a

access control. Security is explicitly outside the scope of Harland itself. Access control for user space

can be ensured by using different database user accounts for different Harland user spaces and sett

base access controls appropriately. Access control within a user space must be provided by the app

according to its own concepts of security principals and its own policies. Harland’s position on securi

issues is substantially similar to that of a JDBC driver that provides a Java program with direct SQL-l

access to a relational database. In many development environments, access control between develo

different test installations is not an issue and it is convenient to share both the database and a single d

account. Both Sue and Bob may test their applications using the same database account and passw

rely on different Harland user names to guarantee that there are no interactions between them.
10

w to

t is an

ou can

in and

ments

hing

lf a

orage

g the

ith

t

ery. In

 is an

g the

f doc-

s, you

ay

of the
Writing A Harland Program

Having seen the basic outline of the Bantam programming interface, let’s turn to specifics and see ho

construct a simple Harland program.

Most of the time, your Harland program is going to be operating on documents. In Harland, a documen

object that potentially corresponds to some content, and which can hold properties. The main things y

do with documents are to read and write their contents, set and get property values, and move them

out of collections. Of course, before you can do any of these things, you have to get hold of the docu

themselves. You’ll normally do this either by creating them (making new document objects), or searc

for them (finding documents according to their properties).

However, in order even to do this, you have to initialize the Harland library context by creating yourse

Storage object. The Storage object is an object that corresponds to a single instance of Harland. The St

object is an object that implements the interfacecom.xerox.bantam.Storage and you obtain one by

calling a static method oncom.xerox.bantam.util.StorageFactory .

If you want to create new document objects, you can do this by operating on the Storage object, usin

create*Document() methods. There are two of these methods allowing for creation of documents w

or without a schema enforced initially. Similarly, a set ofimport*Document() methods allow you to

import documents whose content lives in an external repository such as the filesystem.

Thecreate*Document() andimport*Document() methods will create and return new documen

objects, instances of a Document class. The other way to get a handle to Document objects is via a qu

Harland, a query is a temporary representation of a search expression in the form of an object which

instance of classcom.xerox.bantam.Query . Query objects are obtained from methods of a Query

Factory object, which implements the interfacecom.xerox.bantam.QueryFactory and comes from

the Storage object. Complex queries can be constructed piece by piece from simpler queries, all usin

methods of the Query Factory.

The result of a query search is aDocumentList . This is aList interface that is specialized for the type

of its members, to save you from having to cast return types yourself.

So, you now have your hands on a Document object. What can you do with it? The most obvious set o

ument operations are those related to properties and those related to content.

You can set and get the values of properties using methods on the Document object. In general case

would use the various methods that operate with multiple property values, such assetMultiValues()

andgetMultiValues() . If you are using a property that is constrained to have only one value, you m

safely use the special convenience methodssetPropertyValue() andgetPropertyValue() .

Document content can be accessed using thegetInputStream() andgetOutputStream() calls on

a ContentDocument object. These return Java I/O streams allowing, respectively, reading and writing
11

ument

 sam-
document content. You may also get readers and writers for document content, or use the ContentDoc

object directly as ajavax.activation.DataSource within an activation framework.

A Harland Program
Having seen the basic elements involved in writing a Harland program, we will now look at a minimal

ple program in more detail. The program is shown below.

1. package com.xerox.bantam.demo;

2.

3. import com.xerox.bantam.*;

4. import com.xerox.bantam.util.StorageFactory;

5.

6. public class SimpleExample {

7. public static void main(String args[]) {

8. Storage stobj = null;

9. Document d1 = null, d2 = null;

10. try {

11. stobj = StorageFactory.open();

12. } catch (StorageException ex) {

13. System.out.println(“Unable to initialize storage: “ +

ex.getMessage());

14. System.exit(1);

15. }

16.

17. try {

18. d1 = stobj.createDocument(DocumentType.OBJECT);

19. d1.setPropertyValue(“test.testproperty”, “xxx”);

20. d2 = stobj.createDocument(DocumentType.OBJECT);

21. d2.setPropertyValue(“test.testproperty”, “yyy”);

22. d2.setPropertyValue(“testproperty2”, “zzz”);

23. } catch (StorageException ex) {

24. System.out.println(“Exception reported: “ + ex.getMessage());

25. System.exit(1);

26. }

27.

28. try {

29. Query q =

stobj.getQueryFactory().propertyEquals(“test.testproperty”, “xxx”);

30. DocumentList list = stobj.find(q);

31. System.out.println(“Query returns “ + list.size() + “

document(s).”);

32. list.clear();

33. } catch (StorageException ex) {

34. System.out.println(“Exception during query: “ + ex.getMessage());

35. System.exit(1);

36. }

37. stobj.shutdown();

38. }

39. }

Let’s step through this line by line.
12

y the

he Ban-

s

ne by

ties. The

 in a

. These

-

er-

nt, and

perties.

docu-

 when

names

oid

ty

is the

specific

is pro-

so best

erator,

y

r details.
The very first line just declares that this example is in the packagecom.xerox.bantam.demo . These

demo programs are part of the Harland distribution so that you can run them yourself. We also suppl

source code so that you can experiment with modifications.

The first significant line (3) is an import of everything from the packagecom.xerox.bantam . This pro-

vides access to all the interfaces and classes of the Bantam API, which is the interface to Harland. T

tam package is the only one you will typically need to include. Since this example class also initialize

Harland and obtains the Storage object, it will also use the classcom.xerox.bantam.util.Stor-

ageFactory which is imported here for convenience.

As stated earlier, the first thing that a Harland client needs to do is obtain a Storage object. This is do

calling a static method of a factory class calledcom.xerox.bantam.util.StorageFactory . That

class is imported for convenience at line 4. The call toopen() at line 11 initializes Harland. Note that no

arguments are required because all configuration parameters are obtained from Java system proper

open call can fail, most likely because of some database connectivity problem, so the call is wrapped

try/catch .

Once the initialization is complete, the program creates and manipulates a couple of test documents

are simple documents created with the callcreateDocument() at lines 18 and 20. Calls to create docu

ments are performed on the Storage objectstobj ; they return document handles on which document op

ations, such as property manipulations, can be performed.

Lines 19, 21 and 22 show some simple document operations. We set one property on the first docume

two on the second. In this case, we use the special convenience methods for setting single-valued pro

In this simple example, we know that the properties we are setting will be single-valued because the

ments are newly created, but in general we recommend that the single-value interfaces be used only

there is a schema enforced that restricts a property to one value. Note that we prefixed our property

with “test ” followed by a period. This is a convention that is often useful for structuring names to av

accidental collisions, but it means nothing to Harland; the period character is not significant in proper

names1.

Document operations can report a variety of error states as exceptions using theStorageException

which is trapped at line 23. This exception is the only declared exception in the Bantam API, and so

only exception that most programs will ever need to catch.

Finally, the program runs a query to determine how many documents have the test property set to a

value. Harland document spaces are persistent, so new documents will be accumulated each time th

gram is run, causing the count to increase. The query itself is set up at line 29, using a method of theQue-

ryFactory obtained from the Storage object. At line 30, this query is passed to thefind() method on

the Storage object, causing a query to be initiated. The result of this method is aDocumentList . We can

ask for the size of theDocumentList (as at line 31) if that is all we need, or we can use the standard

iterator() method of the JavaList interface to get an iterator to iterate through the result list.

Although you can access a result list as a list, you should be aware that it is implemented as a stream

performance for processing the elements will be achieved by retrieving them sequentially using an it

rather than using afor loop with a call tosize(), which forces early processing of the entire stream .

Once the desired document has been retrieved, we callclear() on the list. While not essential, this is a

good practice, again because HarlandDocumentList objects are not implemented as simple in-memor

lists and various resources can be released early when the list is cleared.

1.In fact, no characters are significant in property names, although some are illegal. See the release notes fo
13

y

-

e of a

 detail.
Having completed the manipulations, we call theshutdown() method of the Storage object at line 37 in

preparation for process termination. A shutdown closes Harland cleanly, which involves writing out an

modified data that may not have reached the database. It is essential that clients callshutdown prior to pro-

cess termination to avoid data loss or corruption.

At line 39, we reach the end of themain() method in our example, and the program will terminate. Har

land clients are always multi-threaded programs but Harland threads will terminate as a consequenc

shutdown, so no explicit exit is required to terminate the VM for this program.

A Harland Schema
Before we look at more typical usage involving Schemas, we need to examine a complete Schema in

1. /*

2. * SampleSchema.java

3. */

4.

5. package com.xerox.bantam.demo;

6.

7. import com.xerox.bantam.*;

8. import java.util.Vector;

9.

10. public class SampleSchema extends Schema {

11.

12. /**

13. * Constructor is for internal use only.

14. */

15. protected SampleSchema() {

16. // no-arg superclass constructor does work

17. }

18.

19. /**

20. * Name

21. */

22. static public final FieldDescriptor name =

23. new FieldDescriptor(“sample.Name”, String.class);

24.

25. /**

26. * Number

27. */

28. static public final FieldDescriptor number =

29. new FieldDescriptor(“sample.number”, Integer.class);

30.

31. /**

32. * Age

33. */

34. static public final FieldDescriptor age =

35. new FieldDescriptor(“sample.age”, Integer.class);

36.

37. /**

38. * State

39. */

40. static public final String STATE_NEW = “new”;

41. static public final String STATE_OLD = “old”;

42. static public final FieldDescriptor state =
14

 the

defini-

 the

ss

igned to

f value

t the

is cre-

other

ce of
43. new FieldDescriptor(“sample.state”, new String[]{STATE_NEW,

STATE_OLD}, false);

44.

45. /**

46. * Users

47. */

48. static public final FieldDescriptor users =

49. new FieldDescriptor(“sample.users”, String.class, -1, true);

50. /**

51. * The singleton schema.

52. */

53. static private final Schema schema = new SampleSchema();

54.

55. /**

56. * Return the schema for this descriptor. This method must

57. * have this name, but we can’t enforce that in the interface

58. * because this is a static.

59. * @return Schema return the singleton schema for this descriptor

60. */

61. static public Schema getSchema() {

62. return schema;

63. }

64.

65. public static void main(String[] argv) {

66. Schema sch = Schema.getSchema(SampleSchema.class);

67. System.out.println(“sch is “ + sch);

68. }

69. }

Although this example is longer than the minimal program example, it is more regular so we’ll look at

overall structure and then focus on selected pieces.

The first thing to observe is that this is a complete Java class definition. The standard way to write a

tion of a Bantam schema is to create a Java class following the pattern illustrated here. The name of

schema is exactly the fully qualified name of the class: in this example it iscom.xerox.ban-

tam.demo.SampleSchema which we obtain by combining the package name from line 5 with the cla

name from line 10. Any class defining a schema must inherit fromcom.xerox.bantam.Schema as we

see here at line 10. The superclass provides all of the functionality required by Harland.

The individual properties in the schema (also called fields of the schema) are defined by objects ass

static variables. In our example, there are five fields defined:name, number , age , state , andusers .

Notice that these comprise the bulk of the code here. For one of the definitions, there is also a pair o

constants defined at lines 40 and 41.

In addition to the field definitions, we find a few bits of boilerplate code. There is an empty constructor a

top to emphasize that all construction should be left to the superclass. A single instance of the schema

ated and assigned to another static variable at line 53. A static method at line 61 is provided so that

code can obtain an instance of the schema. Finally, this example includes amain() so that you can execute

the class, a feature that is handy for a demonstration but not required for real schemas.

Now let’s look at the details.

Each property of the schema is specified by a field definition. The definition takes the form of an instan

com.xerox.bantam.FieldDescriptor created in an initializer. There are several different con-
15

he

lues.

efini-

at

st

static

as,

ns as a

d idea

 chance of

ent are

d rea-

ltiple

ess and

his

ge to

ted by

possible

eyond

e time,
structors forFieldDescriptor that provide various ways to specify the requirements of a property. T

simplest form is illustrated at line 23 and requires only the property name, and the class type of its va

The meaning of this definition is that the schema requires the property “sample.Name ” to exist and have a

single value which is a String (an instance ofjava.lang.String). A more elaborate example is pro-

vided at lines 43 and 44 where we have the requirement that the property “sample.state ” have one of

two String values: “new” or “old ”. The argumentfalse in this case specifies that the property is not

optional. Finally consider the example of a definition that is much less constraining, at line 49. This d

tion says that the property“sample.users ” may have an unlimited number of values (-1) of class String

and that it is optional (indicated bytrue). See the Javadoc forFieldDescriptor for all the options.

EachFieldDescriptor is assigned to a static variable, which effectively defines a Java constant th

you may use to identify the property in the rest of your program. The Java type of these variables mu

always be exactlystatic public final FieldDescriptor as they are automatically collected

from the class using reflection. You can pick any names for these variables that you like.

Don’t get confused by the fact that there aretwo names for each property in the schema definition. The

actual property name is the string supplied as the first argument to theFieldDescriptor constructor. It

is this property name that Harland will look at. The property name does not need to be the name of the

variable or even contain any reference to the class because it is perfectly legal for two different schem

each defined by its own class, to share a property in common. The class variable name simply functio

constant in code that uses the schema: it is ignored by Harland. Though not strictly required, it is a goo

to construct schema property names using some reference to the schema because that reduces the

accidental conflicts in property names and makes things easier to follow when properties of a docum

printed out. In this example, we used the prefix “sample. ” on our property names to associate them with

the sample schema.

While you need a schema object in order to perform operations involving the schema, there is no goo

son why there should ever be more than one instance of a single schema class within a JVM and mu

instances will hurt performance. For these reasons, the schema constructor should have restricted acc

theremustbe a static methodgetSchema() defined precisely as shown at line 61. Java does not allow t

requirement to be enforced on subclasses ofSchema using the type system, so you must remember to

include the method. If it is omitted, performance will suffer in certain cases. ThegetSchema() method is

the way that your application code will get its hands on an instance of the schema. You should arran

ensure that only one instance is ever created. The example illustrates one way to do this.

For applications written to use specific properties, we recommend that you define schemas as illustra

this example. You can even use the sample code as a template for defining your own schemas. It is

to dynamically define schemas as well but it is not particularly convenient to do so and the process is b

the scope of this introduction.

An Extended Example
Now that we have a schema in hand, we can see how it is used in an application program. At the sam

we’ll look at a number of other features.

1. package com.xerox.bantam.demo;

2.

3. import java.util.Collection;

4. import java.util.HashMap;

5. import java.util.Iterator;

6. import com.xerox.bantam.*;

7. import com.xerox.bantam.util.StorageFactory;
16

8.

9. public class FullExample {

10. public static void main(String args[]) {

11. Storage stobj = null;

12. Document sample = null, found = null;

13. HashMap props = new HashMap();

14. try {

15. stobj = StorageFactory.open();

16. } catch (StorageException ex) {

17. System.out.println(“Unable to initialize storage: “ +

ex.getMessage());

18. System.exit(1);

19. }

20.

21. try {

22. props.put(SampleSchema.name, “First Sample”);

23. props.put(SampleSchema.number, new Integer(1));

24. props.put(SampleSchema.state, SampleSchema.STATE_NEW);

25. props.put(SampleSchema.age, new Integer(5));

26. sample = stobj.createDocument(DocumentType.OBJECT,

SampleSchema.getSchema(),

27. props);

28. } catch (StorageException ex) {

29. System.out.println(“Exception reported: “ + ex.getMessage());

30. System.exit(1);

31. }

32.

33. try {

34. Query q =

stobj.getQueryFactory().propertyEquals(SampleSchema.number, new Integer(1));

35. DocumentList list = stobj.find(q);

36. System.out.println(“Found “ + list.size() + “ sample.”);

37. found = list.getDocument(0);

38. list.clear();

39. } catch (StorageException ex) {

40. System.out.println(“Exception during query: “ + ex.getMessage());

41. System.exit(1);

42. }

43.

44. try {

45. Collection users = found.getMultiValues(SampleSchema.users);

46. int num =

((Integer)found.getPropertyValue(SampleSchema.number)).intValue();

47. System.out.println(“Sample “ + num + “ has “ + users.size() + “

users”);

48.

49. found.addMultiValue(SampleSchema.users, “George”);

50. found.addMultiValue(SampleSchema.users, “Paul”);

51. Iterator iter =

found.getMultiValues(SampleSchema.users).iterator();

52. while (iter.hasNext()) {

53. System.out.println(“User “ + (String)iter.next());

54. }

55. found.setPropertyValue(SampleSchema.state,

SampleSchema.STATE_OLD);
17

r Stor-

ently.

erties to

and

te

ply

l be

izable

suring

a form

 and

perty

t from

and we

es.

7 we

 this

t line

 that

ays

equiva-

es 49
56.

57. found.clearProperty(SampleSchema.users);

58. found.unenforceSchema(SampleSchema.getSchema());

59. found.clearProperty(SampleSchema.age);

60. found.delete();

61. } catch (StorageException ex) {

62. System.out.println(“Exception during manipulation: “ +

ex.getMessage());

63. System.exit(1);

64. }

65. stobj.shutdown();

66. }

67. }

This program begins very much like our first example. There are a few additional imports of standard

java.util classes (lines 3-5) and some additional variable declarations, but then we’re off with a regula

ageFactory.open() as before.

Our first operation with the Storage object is creation of a document, but this time we do it a bit differ

We create the document and enforce the schema all at once. Since our schema requires several prop

be set, we must also supply a value for each of them. The way this is done is to create ajava.util.Map

and add name/value pairs to it for each required property. The map is then passed to thecreateDocu-

ment() method. At lines 22-25 we provide values for the required properties: name, number, state,

age. Notice that the code identifies the properties by using thefinal static FieldDescriptor

defined in the schema class for each one. By using SampleSchema.name we avoid having to duplica

“sample.Name ” throughout the code and thecompiler will catch typos. This way of collecting required

properties is sufficient to satisfy the requirements of a schema but has one limitation: you cannot sup

more than one value for a property in the map. If you do use some form of collection as a value it wil

treated as a single value that happens to be a collection. Remember that Harland accepts any serial

object as a value. Through the map you can supply a first value at least for every required property, en

that they all exist. Additional values need to be added later. To create the document, at line 26, we use

of createDocument() that takes three arguments: the document type, the schema to be enforced,

the map of properties to be set. As an experiment, you might want to try commenting out one of the pro

sets, say line 25, and then running the program. You will get an exception fromcreateDocument() ; no

value has been supplied for one of the required properties so the schema cannot be enforced.

Next up, at lines 34-35, we form and execute a simple query. The query is not fundamentally differen

the query we used in our first example. In this case, we test for an integer value rather than a string,

identify the property byFieldDescriptor from the schema class. Notice that anInteger object must

be used in the query rather than a primitiveint , just as objects must be used when setting property valu

In this case, we retrieve the first document from the result set to use for further manipulations. At line 9

call getDocument() on the list to retrieve element 0, the first element. This method returns aDocument

so there is no need for a cast. Alternatively, we could have used the genericget() method of aList with

a cast. As this program is structured, there should always be exactly one element in the result set for

query, and that element should be the document created at the beginning. You can add anequals() test to

verify this.

The next part of the program demonstrates some operations involving multiple values of a property. A

46, we retrieve all of the values of the property we’re going to use. Recall from the schema definition

SampleSchema.users allows an unlimited number of values. Since the found document should alw

be the document we just created, the output at line 47 should show 0 values for the property. This is

lent to saying that the property doesn’t exist, which is no surprise because we haven’t set it yet! At lin
18

single

4 we

reserve

 is

prop-

, so

of creat-

so far.

demon-

es 58

 a

the

s

why the

not

ou mod-
and 50 we add two values. Adding the first at line 49 causes the property to come into existence with a

value “George”. The second add at line 50 simply augments that with an additional value. At lines 51-5

retrieve all of the values and print them out one at a time. Note that Harland does not guarantee to p

any ordering among the individual values, so we could see “Paul” followed by “George” although that

unlikely for these test conditions.

Finally a few miscellaneous operations are illustrated. At line 57 the values just displayed for the users

erty are removed. TheclearProperty() method removes all existing values of a property, which is

equivalent to unsetting the property. The users property is declared to be optional under the schema

unsetting it is a perfectly legal thing to do.

At line 58 we unenforce the schema. Remember that the schema was enforced as part of the action

ing the document back at line 26. This document has had the schema enforced throughout its lifetime

Once the schema is no longer enforced, it is legal to remove properties that the schema required. We

strate this with removal of the age property at line 59. As an experiment, try switching the order of lin

and 59. TheclearProperty() method will then throw an exception, rejecting the attempt to remove

property that is required by an enforced schema. Note that unenforcing a schema may not eliminate

value type restriction, because Harland enforces consistency of value types for properties in schema

enforced on any document.

To conclude this example, the found document is deleted at line 60. This cleanup step is the reason

query at line 35 should always return exactly one document. Unlike the first example, documents do

accumulate as you run this program because it deletes each document that it creates. Of course, if y

ify the program so that it terminates early with an exception, the document will not be deleted.

A Content Example
Most Harland programs will need to access document content. Let’s take a look at that now.

1. package com.xerox.bantam.demo;

2.

3. import java.io.*;

4. import java.util.Iterator;

5. import com.xerox.bantam.*;

6. import com.xerox.bantam.util.StorageFactory;

7.

8. public class ContentExample {

9. public static void main(String args[]) {

10. Storage stobj = null;

11. ContentDocument doc = null;

12. try {

13. stobj = StorageFactory.open();

14. } catch (StorageException ex) {

15. System.out.println(“Unable to initialize storage: “ +

ex.getMessage());

16. System.exit(1);

17. }

18.

19. try {

20. doc=(ContentDocument)stobj.createDocument(DocumentType.CONTENT);

21. doc.setPropertyValue(SampleSchema.name, “Content Sample”);

22. doc.setPropertyValue(SampleSchema.number, new Integer(2));

23. doc.setPropertyValue(SampleSchema.age, new Integer(7));

24. doc.setPropertyValue(SampleSchema.state, SampleSchema.STATE_NEW);
19

 The

n itself

 have

rce a

cing
25. doc.enforceSchema(SampleSchema.getSchema());

26. OutputStream os = doc.getOutputStream();

27. PrintStream ps = new PrintStream(os);

28. ps.println(“My kingdom for some content”);

29. ps.close();

30. } catch (StorageException ex) {

31. System.out.println(“Exception reported: “ + ex.getMessage());

32. System.exit(1);

33. } catch (IOException io) {

34. System.out.println(“IO error writing content: “ +

io.getMessage());

35. }

36.

37. try {

38. Query q =

stobj.getQueryFactory().propertyEquals(SampleSchema.number, new Integer(2));

39. DocumentList list = stobj.find(q);

40. Iterator iter = list.iterator();

41. while (iter.hasNext()) {

42. doc = (ContentDocument)iter.next();

43. System.out.println(“Sample “ +

doc.getPropertyValue(SampleSchema.number) + “ content:”);

44. InputStream is = doc.getInputStream();

45. InputStreamReader isr = new InputStreamReader(is);

46. BufferedReader reader = new BufferedReader(isr);

47. String line;

48. while ((line = reader.readLine()) != null) {

49. System.out.println(line);

50. }

51. reader.close();

52. doc.delete();

53. }

54. list.clear();

55. } catch (StorageException ex) {

56. System.out.println(“Exception during query: “ + ex.getMessage());

57. System.exit(1);

58. } catch (IOException io) {

59. System.out.println(“IO error reading content: “ +

io.getMessage());

60. }

61. stobj.shutdown();

62. System.exit(0);

63. }

64. }

The program starts off in the now familiar manner to initialize Harland and obtain the Storage object.

only early difference to point out is that we’ve imported at line 3 everything fromjava.io . Now that we’re

dealing with reading and writing content, we’ll need a few of these classes.

As in the previous examples, this program begins by creating a document to manipulate. The creatio

is at line 20. Notice that this time we request the creation of a content document where previously we

just asked for an Object document. Several property values are set at lines 21-24. At line 25 we enfo

schema. This sequence provides an example of an alternate way of initializing documents and enfor

schemas that does not use the map of required property values.
20

 sup-

rapped

ream

xt as

eated.

r each

 not

time

at prep-

re will

ood

t the

rises.
We begin dealing with the content by writing some into our newly minted content document. Harland

ports simple input and output streams to access document content. In many cases, these will need to w

by other Java I/O streams as in other applications involving I/O. Here we obtain the low-level output st

from the document at line 26. At line 27 we wrap it in a print stream so that it is easy to emit a line of te

the content. Line 28 is where the content is generated. Finally, at line 29, we close the stream.

The reading side begins with execution of a query at line 39 which should retrieve the document just cr

In this program we illustrate a more substantial loop through the result set, printing out the content fo

document. The loop uses an iterator for the result list, obtained at line 40. The iterator interface does

have a document-specific method, so we need to cast the return fromnext() at line 42. Just as we did on

the output side, we obtain a low-level stream from the document at line 44. For convenient, line-at-a-

reading, we wrap another stream and a reader around the input stream at lines 45 and 46. With all th

aration out of the way, it is a simple matter to iterate through the content one line at a time callingread-

Line() on the reader. As with all I/O streams, it is important to remember theclose() .

As we finish reading each document, we delete it at line 51, so documents will not accumulate and the

only be one found for each execution of the program.

That’s the last of our examples! We have not illustrated everything here, but we hope you now have g

overview of programming with Harland. For complete information about all the API calls please consul

online JavaDoc. Please also look over the technical details covered in the next chapter to avoid surp
21

ction

f

ere is a

 to

te no

lem.

lop-

ultiple

fe for

ance.

not

dering.

ays

exam-

 by the

serial-

 be sur-

 oper-

Ban-

to

feed-

le for
Technical Details

This section covers some important details that are too technical to be covered in the high level introdu

earlier. Many of these details will explain otherwise mysterious things and help you avoid a number o

potential problems.

Schema Persistence and Evolution
Harland persistently stores schema definitions in use. When an application starts using a schema, th

possibility of conflict with a definition of a schema previously stored or with property values already

enforced. Harland will reject conflicting schemas by throwing an exception. TheStorage.validate-

Schema() method is provided to allow an application to test a schema for conflicts before attempting

use it in a real operation. At this point, Harland may reject new versions of schemas even if they crea

conflict, but it is our intention to automatically support schema evolution that is conflict-free.

Designing for smooth, simple schema evolution without inconsistency is an important but complex prob

We have done very little work on this problem to date, so Harland is at a very immature stage of deve

ment in this area.

Concurrency and Transactions
As explained in the preceding chapter, Harland does not support concurrent access to a space from m

JVM processes but does support multithreading. Harland has been designed and built so that it is sa

multiple threads in the same JVM to simultaneously call methods on objects from a single Harland inst

This means that concurrent calls will not cause a fault in Harland, will not deadlock threads, and will

result in any state of Harland that could not be obtained by serializing the calls according to some or

Given an arbitrary interleaving of the execution of multiple threads by the scheduler, however, it is alw

possible to get surprising results when two threads conflict in operations involving the same data. For

ple, thread A may issue a query whose result includes a document that no longer matches the query

time it is examined because thread B has modified the properties of the document. Harland effectively

izes operations only at the granularity of single API methods, and even there the effective order may

prising given arbitrary instruction interleaving by the thread scheduler.

The Bantam API does not yet provide methods for achieving any transactional behavior over multiple

ations. We are working to identify the features that are essential for the kinds of applications that fit the

tam data model. To preserve simplicity for programmers and maximize performance we do not wish

impose a general ACID model that may not be necessary. We are particularly interested in receiving

back about the requirements of applications for transactional semantics. In the meantime, it is possib

applications to implement some of the ACID properties on top of Harland.
22

lmost all

m API

 being

ated

ported

an

 applica-

ope to

s a bug

t will

ecking

ent

h an

y data

ious

a has

 seman-

ary

some

sed as

nded to

ble

hether

ay be

fully

n algo-

ts and

imilar

n one

formed

the

rocess
Exceptions and Failure Recovery
Since Harland is a moderately complex library that depends on a stable connection to a database, a

calls can generate exceptions. For programmer convenience, the only declared exception in the Banta

is the StorageException. Each StorageException has a tag which indicates a specific problem that is

reported. The tags are designed to identify errors in use of the API for applications that are sophistic

enough to examine them. Internal problems, such as loss of connectivity to the database, will all be re

with the tag valueUNDERLYING_EXCEPTION because there is generally nothing that can be done by

application to recover from such errors or even to translate them for users.

Harland is not yet robust against temporary failures such as loss of database connectivity, and so an

tion that experiences such a condition will have to be restarted in order to continue functioning. We h

improve robustness in these areas substantially in future releases.

Harland ships with a large number of internal assertion checks enabled. An assertion failure indicate

in Harland and is reported by throwing an unchecked (runtime) exception, specifically

java.lang.IllegalStateException or java.lang.IllegalArgumentException .

Applications should not attempt to catch these exceptions in general, since they report problems tha

never occur in a correct implementation. In a future release it may be possible to disable assertion ch

at runtime to improve performance.

Caching and Object Management
As an essential tool for achieving reasonable application performance, Harland maintains a transpar

cache of property values. During normal operation, there will typically be dirty data in memory and wit

appropriate level of logging enabled you will see messages from the writeback thread that flushes dirt

to the database. It is essential that application programs terminate gracefully by invoking theStor-

age.shutdown() method prior to exiting. Harland is not robust against sudden hardware failure. Var

flush methods exist or are contemplated to allow some level of application assurance that dirty dat

been committed. These issues are still under consideration as a part of the question of transactional

tics.

Since Harland maintains a cache, and Java does not offer a generic deep-copy mechanism for arbitr

instance objects, we cannot prevent an application from holding a reference to exactly the object for

property value sitting in the cache waiting to be written to the database. When mutable objects are u

property values, the application author must ensure that the state is not changed after the object is ha

Harland, otherwise it is impossible to reliably predict what value Harland will preserve. Similarly, muta

objects returned by Harland as property values must not be altered. Collections that Harland returns, w

lists of documents that are the result of a query or the members of a collection, or groups of values, m

altered by the application without having any effect on the persistent document state. Harland is care

designed to support modifications of these collections without side-effects because it makes commo

rithms so much easier to write and avoids unnecessary copying of data.

The document objects that Harland provides to an application are effectively handles to the documen

are only meaningful to Harland itself. For this reason, serializing these objects to some stream and s

operations are of very little value. Also, applications should not expect that there will never be more tha

Java object for a particular document. Comparisons between document objects should always be per

by calling theequals() method. Harland’s caching of property values is completely decoupled from

holding of document objects by an application, so it is never necessary for the garbage collector to p

those objects in order to recover cache space.
23

ents. A

es are

the

time.

em.

t in an

al

o

the

t. The

eposito-

-

of the

exter-

 con-

al plat-

on.

ry.
Logging
Harland employs a logging package internally to produce standardized messages reporting various ev

large volume of messages may be emitted during normal operation, particularly if debugging messag

enabled. It is possible to control both the level and destination of logging messages at runtime - see

release notes for details. The internal logging package is not available for use by applications at this

Importing Documents
We have not covered a less common operation that you may wish to perform:importing documents. Har-

land, remember, is capable of accessing content stored in an external repository such as the filesyst

Importing is the process of setting up an association between a Harland document and some conten

external repository.

Please note that importing has not been tested and may not function correctly. Also, the filesystem

repository is the only one that supports importing and it cannot be used in conjunction with the intern

(database) repository at this time.

The way to do this is withimportDocument() , which is a method on the Storage object. There are tw

versions of this method, one of which allows a schema to be enforced upon import. We will consider

simpler form here, which takes two String arguments: the first isrepo , which specifies the repository on

which the document content resides, and the second isref , a reference to the content on that repository:

Harland maintains a set of Repository objects corresponding to the different repositories it knows abou

repo argument names one of these repositories. You may find constants for the names of standard r

ries defined in thecom.xerox.bantam.Storage class, although there may not be repositories avail

able for all of these constants and some may not support import.

The second argument is a reference to the location of the content for that repository. So, in the case

filesystem repository, the second argument should be a filename; in the case of a Web repository1, it would

be a URL.

The result of theimportDocument() method is aContentDocument object.ContentDocument

is a sub-interface ofDocument . Accessing the document’s content will automatically fetch it from the

external repository.

Note that importing is a one-time operation. It creates a new document that contains a reference to the

nal content. Importing is not like copying; importing deals with the reference to the file rather than the

tent. This means that the content returned bygetInputStream() is always up-to-date even when the

external content changes; but that if the external file is deleted or moved, Harland willnot track these

changes in the external repository. Using a filesystem repository introduces dependencies on the loc

form that may adversely affect portability of the application. We urge you to use this facility with cauti

1. TheWebRepo constant is defined for possible future expansion. There is not presently any Web reposito
24

ude

tain to

in the

1.3.0

. In addi-

m API

propri-

edition

.6

e do

n

r

eSQL

will
Appendix I: Release Notes for
har23

Most of this document is written so as to be neutral with respect to the installation details and other r

mechanics of any given Harland release or installation. This appendix provides some details that per

the specifics of the current release.

Documentation
For full documentation on the Bantam API, you should refer to the JavaDoc documentation included

distribution you received. If you are inside Xerox, you may access the JavaDoc online at

http://parcweb.parc.xerox.com/project/placeless/harland/builds/har23/doc

Prerequisites
Harland requires an installation of the Java 2 Platform. In particular, the har23 release is built on the

release from Sun. We recommend 1.3.0 because of severe bugs in the socket code of earlier releases

tion, you will need a library that we do not distribute:

• activation.jar, the Java activation framework (javax.activation). This is needed because the Banta
uses javax.activation.DataSource. It is available from Sun.

Harland also requires an installation of a supported relational database system and libraries for the ap

ate JDBC driver. Harland works with both Oracle and PostgreSQL.

Oracle
The Oracle database version must be 8.1.6 (also called 8i release 2) or higher. Enterprise vs. Standard

shouldn’t really matter and Linux vs. Solaris shouldn’t really matter either. We test against Oracle 8.1

Enterprise on Solaris. In addition to the database itself, you will need the following Java libraries that w

not distribute:

• an appropriate Oracle8 JDBC driver. We recommend the Thin driver and currently test with versio
8.1.6.0.1. It is available from Oracle.
• jndi.jar, the JNDI (javax.naming) library. This file is needed because the Oracle8 Thin JDBC drive
requires it. It is available from Sun.

PostgreSQL
We test against the PostgreSQL database version 7.0.2. We currently supply a version of the Postgr

JDBC driver that has been modified to fix a couple of bugs. This driver is delivered as pgsql.jar. You

need one additional library required by the JDBC driver and not distributed by us:

• jdbc2_0-stdext.jar, the JDBC 2.0 standard extension, available from Sun.
25

will

d Har-

gsql.jar

e JAR

m prop-

 the

perties
Installing Harland
Harland ships as a single distribution JAR file. Begin by unpacking this in a suitable disk location. That

provide you with the documentation, sample programs, and the JAR files.

Harland code is currently structured as a two JAR files. The first, harland.jar, contains the Bantam an

land classes themselves. The second, logger.jar contains additional code required for logging. The p

file is a version of the PostgreSQL JDBC driver that you should use (see the prerequisites section).

In order to run programs that use Harland, you must include the supplied JAR files and the prerequisit

files in the classpath of the program and run with a Java virtual machine.

Configuration Parameters
As this document has described, Harland obtains its configuration parameter values from Java syste

erties. In order to run an application with Harland, you will need to arrange to supply the Java Virtual

Machine (JVM) with appropriate values for the parameters for your installation. This may be done on

command line directly using Java -D arguments or may be done by specifying the values in a Java pro

file and referencing that file with a-Dharland.propfile argument.

The following table describes all of the configuration parameters.

Table 1: Harland Configuration Parameters

Property Name Default Description

Basics

harland.propfile Properties file to be used as a source of
values for other properties. See Java
documentation ofjava.util.
Properties for information about
this file format

harland.user process user name Harland user name, the name of the user
space of documents

Database

harland.db.name oracle Name of database to use. Options:
• oracle
• postgresql

Oracle

oracle.databaseName TEST8K Oracle database SID

oracle.dataSourceName oracle.jdbc.pool.
OracleDataSource

Specific data source subclass.
Options:
oracle.jdbc.pool.
• OracleConnectionCacheImpl
• OracleConnectionPoolDataSource

• OracleXADataSource
For future use – only tested with default
26

oracle.user presto Oracle user name. Oracle names are
case-insensitive

oracle.password prestopass Oracle password. Oracle passwords are
case-insensitive.

oracle.portNumber 1521 TCP port number as decimal-encoded
string

oracle.serverName pythia Name of the Oracle server machine

oracle.driverType thin Type of JDBC driver. Options:
• thin – Type 4 (all Java)
• oci8 – Type 2 (native)
Only tested with default

PostgreSQL

pgsql.databaseName TEST8K PostgreSQL database name

pgsql.user presto PostgreSQL user name

pgsql.password prestopass PostgreSQL password

pgsql.portNumber 5432 TCP port number as decimal-encoded
string

pgsql.serverName pythia Name of the PostgreSQL server machine

Repository

harland.usefs false Determines whether the filesystem
repository is enabled.

fs.repo Directory under which content files in
the filesystem repository will be stored.

fs.repoRoot process home dir Directory under which filesystem reposi-
tory directories will be created by Har-
land user name iffs.repo is not set.

Cache

harland.cache.max 1000 Maximum number of live documents in
the cache

harland.cache.delay 10000 Sleep delay for writing thread in msecs.
0 = disable writing (debugging only)

harland.cache.
writebatch

20 Maximum number of dirty documents to
be written out in a batch

Logging

harland.logfile File to which log output should be writ-
ten instead of standard output/error

Table 1: Harland Configuration Parameters

Property Name Default Description
27

om-

 For

har-

:

 Har-

. In that
Running a Harland Program
You may run one of the sample applications to verify that your installation is working properly. We rec

mend that you create a properties file with appropriate values for all of the configuration parameters.

example, you might create a properties file that looks like this:

harland.user = myuser

oracle.databaseName = mydbsid

oracle.user = mydbuser

oracle.password = mydbpass

oracle.serverName = mydbserver

thinkdoc.config.logDebug = false

Supposing that you create such a file with the appropriate values for your installation and store it as

land.properties in your home directory, you can run SimpleExample with the following Unix command

% java -Dharland.propfile=$HOME/harland.properties \

com.xerox.bantam.demo.SimpleExample

On an empty Harland space, the above command should produce output similar to this:

Loading parameter values from /tilde/jthornto/harland.properties

Query returns 1 document(s).

Resetting Your Harland Space
You can reset your space with the command:

% java -Dharland.propfile=$HOME/harland.properties \

com.xerox.bantam.harland.BootManager reset

A reset will remove all data for documents in the target user space, including content created through

land. In some cases, a simple reset may fail due to some corruption or inconsistency in the database

case you should run the same command but substitute “brute” instead of “reset”.

thinkdoc.config.
logDebug

true Determines whether debug messages
appear in the log output

thinkdoc.config.
logStorage

true Determines whether Harland log mes-
sages appear at all

Warnings

harland.serializable allow Controls handling of uses of serializable
values of application classes. Options:
• allow - No special handling
• warn - Log uses
• trace - Report uses by stack trace
• reject - Reject uses by exception
Note that reference to a schema requir-
ing an application class for property
value(s) is considered a ‘use’

Table 1: Harland Configuration Parameters

Property Name Default Description
28

s. All

ty

 using

ames

ase

alues

 used

ish to

ase

ved by

ill con-

ses is

itory,

rmal
Restrictions and Limitations

Property Names
The name of any property is a string containing at least one character and at most 255 character

property names prefixed with “harland” (regardless of case) are reserved for internal use. Proper

names have no significant internal structure, though we suggest hierarchical allocation of names

dots as separators as a convention, e.g. “a.b.c.d”. The following characters are illegal in property n

and may result in strange errors and undefined results if used:

' " %

(single quote, double quote, percent)

Large String Values
Harland will persistently store String property values of arbitrary length, limited only by the datab

large object capacity. Query predicates, however, will not work as expected for very long String v

(longer than about 4K).

Repositories
Harland only has implementations of the internal and filesystem repositories and they may not be

simultaneously. We recommend that you use the internal repository in the database, but if you w

use the filesystem instead you must switch to it by setting theharland.usefs property totrue .

The internal repository does not support any form of import.

Database Connections
Harland does not yet deal gracefully with loss of connectivity to the database. If one of the datab

connections is disrupted, the Harland application will need to be restarted in order to recover.

Security
As described earlier, Harland itself does not provide any security features. Access control can be achie

appropriate configuration of different Oracle database user accounts and tablespaces, since Harland w

nect to the database using whatever name and password it is given. Security configuration of databa

beyond the scope of this document and we are unable to help with it. If you use the filesystem repos

document content will be stored in a filesystem accessible to the application process. In this case, no

filesystem access controls may be used to restrict access.
29

ents.
ay

Har-

 con-
Appendix II: Glossary

Collection:
a form of Document that supports the Collection protocol. It collects together a set of docum
Documents can be added and removed, and the contents retrieved. A collection may some d
embody aquery whose result set is, dynamically, the membership of the collection.

Content:
the actual bits that adocumentcontains (or may contain). Content resides on an externalrepository.

Content Provider:
an internal Harland component that delivers content between therepository and the application.
Different content providers enable different repository access protocols to be incorporated into
land.

Database:
a database system (such as Oracle) that provides the backing store forproperties and possiblycon-
tent

Document:
the basic object of the Harland system. A Document may or may not havecontent, but it always has
properties.

Field Descriptor:
definition of the value constraints on an individualproperty within aschema

Instance:
aStorage object accessing auser space

Property:
a name/value pair associated with a document.

Query:
an object representing a set of search terms over the property space.

Repository:
an external store ofcontent. Examples include the database (internal repository), the filesystem, the
World Wide Web, etc.

Schema:
a definition of a group ofproperties and constraints on the values of those properties

Storage object:
the primary entry point into the Harland library for clients. The Storage object allows users to
nect to Harlanduser spaces, search fordocuments, etc.

User Space:
the collection ofdocuments, schemas, etc. associated with a single Harland user
30

al to
Appendix III: Release History

The first Harland release (build har1) was in March 2000. All early releases were very limited and intern

Xerox. The first general release was har18, released under the trial license found in Appendix IV.

Changes for har23
• Introduced support for PostgreSQL
• Added query operators for inequality tests on Comparable values (<,>,<=,>=)
• Fixed thread race condition manifested by intermittent exception during shutdown
31

ou,

gree-

all

ith the

your

e Har-

s

e copy

condi-

are.

are

d by

copy,

 of the

 to

ck that

ses,

ther
Appendix IV: License

Xerox AlphaX 90-Day Trial

Software License Agreement
BY DOWNLOADING OR OTHERWISE INSTALLING THIS SOFTWARE YOU AGREE TO BE

BOUND BY THE TERMS AND CONDITIONS OF THIS AGREEMENT. IF YOU DO NOT AGREE

WITH THESE TERMS AND CONDITIONS, DO NOT DOWNLOAD OR INSTALL THIS SOFTWARE.

This Agreement is between Xerox Corporation, with offices at 3333 Coyote Hill Drive ("Xerox"), and y

the person or entity downloading and installing the Software referenced in paragraph one below. This A

ment sets forth terms and conditions applicable to your use of this Software. The term "Software" sh

include the software, its documentation and other supporting materials packaged and downloaded w

software. Xerox is providing the Software for your trial and evaluation free of charge, and encourages

feedback on the Software.

1. License Grant. Xerox grants you a non-exclusive and non-transferable license to install and use th

land Software solely for the purpose of evaluating the Software and providing feedback to Xerox. Thi

Agreement does not constitute a license to use any other version or copy of the Software other then th

or version obtained by accepting this Agreement.

2. Acceptance of Agreement. By downloading the Software, you agree to be bound by the terms and

tions of this Agreement.

3. Term. You may use the Software for ninety (90) days after the date on which you download the Softw

Upon termination or expiration of this Agreement, you shall destroy all full or partial copies of the Softw

and all other materials made available hereunder by Xerox.

4. Ownership and Copyright. You agree with Xerox that the Software and related information is owne

Xerox and that, unless otherwise specifically agreed by Xerox in writing, you:

(a) shall not distribute, transfer, loan or otherwise provide the Software to any third party, and shall not

reverse compile, reverse engineer or disassemble the Software, the sole exception being that a copy

Software may be made for back-up purposes ;

(b) will grant to Xerox an irrevocable license under all intellectual property rights (including copyright)

use, copy distribute, sublicense, display, perform and prepare derivative works based upon any feedba

you provide to Xerox, including materials, fixes, error corrections, enhancements, applications and u

suggestions and the like; and

(c) shall display, and shall not alter or remove, Xerox’ and/or any of its’ licensors copyright notices and o

proprietary notices.
32

nties

ED

tion

y to

ed to

are

nal

itional
5. Warranty and Liability. Due to the Software being in a developmental stage, Xerox makes no warra

whatsoever as to the operational performance of the Software. THE SOFTWARE IS BEING PROVID

"AS-IS". XEROX DISCLAIMS ALL WARRANTIES WITH REGARD TO THE SOFTWARE, INCLUD-

ING WITHOUT LIMITATION ALL WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A

PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPRO-

PRIATENESS OF USING THIS SOFTWARE AND ASSUME ALL RISKS ASSOCIATED WITH ITS

USE, INCLUDING BUT NOT LIMITED TO THE RISKS OF PROGRAM ERRORS, DAMAGE TO OR

LOSS OF DATA, PROGRAMS OR EQUIPMENT, AND UNAVAILABILITY OR INTERRUPTION OF

OPERATIONS. XEROX SHALL HAVE NO LIABILITY FOR DIRECT, INDIRECT, SPECIAL, INCI-

DENTAL, CONSEQUENTIAL OR TORT DAMAGES ARISING OUT OF USE OR PERFORMANCE OF

THE SOFTWARE, EVEN IF XEROX HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-

AGES. Some states or provinces do not allow the exclusion or limitation of implied warranties or limita

of liability for incidental or consequential damages, so the above exclusion or limitation may not appl

you. Because software is inherently complex and may not be completely free of errors, you are advis

verify and back up your work. Additionally, Xerox does not guarantee compatibility between the Softw

and any future versions of the Software.

6. No Obligation. Xerox is under no obligation to develop the Software or market the Software as a fi

product. Your use of the Software is at no charge, and your use shall not obligate you to purchase add

software from Xerox.

Copyright 2000 Xerox Corporation. All Rights Reserved.

Updated: 08/18/2000
33

	Writing Programs for the Harland Property Store
	How to Use this Document
	Introduction: Bantam/Harland Concepts
	What is Harland?
	The Architecture of Harland Programs
	Documents, Collections and Repositories
	Single and Multiple Values
	Collections and Queries
	Schemas
	Databases, User Spaces, and Instances

	Writing A Harland Program
	A Harland Program
	A Harland Schema
	An Extended Example
	A Content Example

	Technical Details
	Schema Persistence and Evolution
	Concurrency and Transactions
	Exceptions and Failure Recovery
	Caching and Object Management
	Logging
	Importing Documents

	Appendix I: Release Notes for har23
	Documentation
	Prerequisites
	Oracle
	PostgreSQL

	Installing Harland
	Configuration Parameters
	Running a Harland Program
	Resetting Your Harland Space

	Restrictions and Limitations
	Property Names
	Large String Values
	Repositories
	Database Connections

	Security

	Appendix II: Glossary
	Appendix III: Release History
	Changes for har23

	Appendix IV: License
	Xerox AlphaX 90-Day Trial
	Software License Agreement

