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Abstract

Many database reorganization techniques move tuples in a table from one loca-
tion to another in a single pass. For example, distributed database systems move
or copy tables between sites to optimize data placement. However, such systems
typically drop and then rebuild the secondary indices defined over the table being
moved. There are two primary reasons for this. First, moving a table invalidates
any physical tuple pointers contained in its secondary indices (e.g., in the leaves
of a tree). Second, changes in tuple or page size can cause index tuples on the
remote site to be repacked onto pages in a way that degrades the clustering
imposed by the structure (e.g., in the upper levels of an R-tree). The cost of
rebuilding secondary indices is largely why table movement has been considered
a expensive operation. This, in turn, means that data layout optimization has
been considered expensive as well. In this paper, we present a simple, efficient
mechanism for translating index pointers as well as an approach to preserving
internal index clustering. By exploiting the structure of the original index, we can
recycle its important properties and produce a usable index on the remote site
without the expense of building one from scratch. We also demonstrate the effec-
tiveness of these mechanisms using performance measurements of an implementa-
tion in the Mariposa distributed data manager.

1. Introduction

A variety of database reorganization techniques move tuples in a table from one location to

another in a single pass. Examples of such techniques include movement of tables between sites

in a distributed database and tablespace defragmentation in a single-site database. Unfortunately,

reorganization comes at a cost. Because secondary indices usually contain (completely or par-
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tially) physical tuple pointers into the underlying table,1 moving a table invalidates its indices.

Rebuilding indices from scratch has two major cost components. First, rebuilding is extremely

time-consuming and resource-intensive. Time requirements can be reduced using parallel sorting

and bulk-loading algorithms [PEAR91], but resource requirements cannot. Second, proper

indexing is critical to good performance and the table is likely to be useless while the table is

being reindexed. If we can reduce the cost of reindexing a table, we can afford to reorganize

more often and improve the overall performance of the database.

In this paper, we explore the tradeoffs involved in reconstructing index structures when the

underlying table is moved. The remainder of this introduction provides a more precise definition

of the problem, its applications and our cost and benefit metrics. In the rest of the paper we dis-

cuss several implementation options, including some previously suggested in the literature, and

present a comparative performance analysis based on an implementation of these options in the

Mariposa distributed data manager [STON94].

Our study focuses on the class of reorganization operations in which a base table is copied

from asource table Sto a target table T. (In a single-site database,T may be on another disk

partition; in a distributed database,T may be on another machine.) We assume that the copying

operation can alter the layout of tuples on pages (e.g., because the page size or tuple size

changes, or through defragmentation) but that the order of valid tuples cannot be changed. This

kind of copying operation arises in many situations, such as:

• Architecture interchange. Computer architectures impose varying restrictions on the size and

memory alignment of native data types. These restrictions cause changes in tuple size that

may cause pages to overflow or underflow in a way that is entirely dependent on the schema

and contents (e.g., in the case of variable-length columns) of the tuples.

• Reorganization. Even within a single database, we may wish to copy a table without altering

the order of the tuples. Such situations include moving a table to a different disk partition,

changing a table’s page size, defragmenting pages within a tablespace, and certain types of

garbage collection (such as that performed by thePOSTGRESvacuum cleaner [STON87]).

• Media interchange. Different storage devices may have different page sizes that are visible to

the data manager.

Our basic idea for making reindexing more efficient is that it is often cheaper to transmit a

modified version of an index than to rebuild the index from scratch. Note that we do not neces-

sarily want to preserve the exact structure of the source index. Instead, werecyclethe materials

1 There are a few important exceptions, such as Tandem’s NonStop SQL, which use primary key tuple pointers.
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(e.g., clustering/ordering, tuple pointers, etc.) in the source index that are computationally expen-

sive.

Index recycling has two main subproblems. First, we must decide how we can best adapt

thestructureof the source index. That is, given an index overS, we wish to know what (sub)set

of index pages and other information we should send to the target machine to facilitate the effi-

cient production of an index overT. This adaptation process must, of course, be less costly than

rebuilding the index overT and should not significantly degrade index retrieval performance rel-

ative to a rebuilt index. Second, we must be able to translate the tuple pointers, ortuple identi-

fiers(TIDs), in a source index into valid TIDs in the corresponding target index.

The remainder of the paper is organized as follows. In Section 2, we discuss previous solu-

tions to the problems of reindexing and TID translation. In Section 3, we give our algorithms for

these problems. In Section 4, we present the details of our implementation in Mariposa and the

results of our experiments. In Section 5, we discuss possible directions for future work. Finally,

Section 6 provides our conclusions.

2. Related Work

While one can find a great deal of related research on index construction and the translation

of various kinds of pointers, there has been relatively little published on the reconstruction of

indices based on other, similar indices. Below, we discuss the literature on recycling index struc-

ture and index pointers. In particular, we try to draw out the shortcomings in the existing work

that we address here.

2.1. Recycling Index Structure

General techniques for the splitting and merging of index nodes are certainly relevant; these

are the tools with which we manipulate existing index structures. Index bulk-load algorithms are

also clearly relevant. However, there appears to be little work on reconstruction of indices based

on the content and properties of existing indices. Sunet al. [SUN94] present an algorithm for

“reestablishing” B+-tree indices in a distributed environment. Their algorithm makes no use of

the overall tree structure; instead, it is a variation on the standard sort/build technique for bulk-

loading B-trees. The source machine transmits the (sorted) leaf tuples of the source index to the

target machine, allowing the target machine to build its index bottom-up without the usual sort-

ing step. This approach obviously applies only to ordered data structures such as the B+-tree or

B-tree.
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2.2. Recycling Pointers

The problem of pointer translation has been more extensively studied than index structure

translation. Previous work falls into two broad categories: translation of pointers by keeping per-

pointer information, and translation of pointers using per-page information. We examine each in

turn.

Approaches Using Per-TID Information

One obvious way to map TIDs is to use an array consisting ofold-TID → new-TID

entries. In general, such a array will not fit in physical memory; translating the TIDs in a large

unclustered index will have poor locality and therefore poor virtual memory behavior.

A more sophisticated set of options is suggested by the fact that the TID translation problem

has some similarities topointer swizzling, or translation between object reference formats as

stored in secondary and main memory, in object-oriented databases. When main memory point-

ers are OIDs, the “how” (as opposed to the “when”) part of swizzling is known as theOID map-

ping problem. OID mapping mechanisms are generally more complex than arrays and include

segmented mapping tables (e.g., ObServer [HORN87]), hash tables (e.g., Itasca [EICK95]) and

B-trees (e.g., GemStone [MAIE87]). Mapping data structures that containOID → address

entries work in the OODBMS environment because the database clusters and caches the mapping

structure. However, when moving an index, we know we are processing all pointers contained in

the index in a short period of time without locality guarantees. OID mapping techniques will not

perform well in this bulk-translation environment.

Since the main problem with simple mapping structures is their size, an obvious alternative

is to change the mapping granularity. We now turn to TID translation algorithms that use page-

level bookkeeping.

Approaches Using Per-Page Information

There are three main groups of proposed algorithms for translating TIDs while keeping only

per-page information. These algorithm classes vary in the amount of information they store and

the precision of their TID translations. However, all of them assume the use of physical

{page,offset} TIDs. First, there have been a number of proposals that exploit (unrealistic)

assumptions to provide precise translation of source TIDs to target TIDs. Second, the original

Mariposa design [STON93b] provides an algorithm for mapping a source TID to a small range

of potential target pages. Finally, Sunet al. give an algorithm that maps a source TID into the

correct target page.
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Under appropriate assumptions, we can map source TIDs directly into target TIDs. Assume

for the moment that (1) the system uses byte offset TIDs, (2) tuples cannot change size and can-

not be reordered, and (3) source pages map directly to a fixed number of target pages (e.g., using

a constant expansion or contraction factor) irrespective of fill factor. In this case, we can use the

constant expansion/contraction factor to map source page numbers to target page numbers and

then use a simple arithmetic formula to map the source offsets to target offsets. This solution

achieves our goal of storing only page-level mapping information, but the assumptions violate

the conditions we stated in Section 1. [SUN94] and [STON93b] both contain a number of straw-

man solutions similar to that just described.

Unlike the above strawman proposal, Mariposa does assume that tuples can change size.

Instead of using a constant expansion/contraction factor, the original Mariposa design proposes a

simple page number translation table. For example, the table might record the fact that tuples on

source page 14 have been placed on target pages 66, 67 and 68. However, because tuple size

changes are data-dependent, an arithmetic expression can no longer be used to calculate precise

byte offsets within the target pages. Instead, the translation algorithm extracts the key from the

index tuple. It then extracts the source page number from the source TID and maps it into the set

of one or more eligible target pages. The final target TID is obtained by searching each of the

target page(s) for the desired tuple using the index key.

The original Mariposa approach works for any access method but has several important

shortcomings. First, if the base table is not clustered on the indexed column(s), searching the

base table pages to complete the TID translation will result in many random page faults. Second,

this strategy fails if the indexed column is not unique. Finally, the translation table only provides

a range of possible target pages on which the tuple might be found, which makes the process of

translating the target byte offset much less efficient than if the translation table provided the cor-

rect page.

Finally, Sunet al. also address the TID translation problem. Like the Mariposa design,

they use a page-level translation table. However, their page-mapping solution is superior to the

original Mariposa solution because it accurately maps a source TID to the correct target page.

The basic idea is to record, for each source pages, the byte offset of the first tuple froms that

falls on a given target paget. Recall that tuples inS are copied intoT in order. Hence, given the

byte offset within a source TID, one can determine the exactt to which the corresponding target

TID should point. A more detailed critique of the algorithm may be found in [AOKI95]; the

main observation here is the fact that this method still does not allow the computation of the byte

offset of the target TID. Like the Mariposa algorithm, this algorithm requires that the database

fault in and searcht in order to translate the byte offset.
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3. Toward More General Index Recycling Algorithms

Having described the techniques proposed in the literature for supporting operations similar

to those found in index recycling, we now present our own methods for performing those opera-

tions. Again, we structure our discussion in terms of recycling index structure and recycling

index pointers.

3.1. Recycling Index Structure

In this paper, we discuss algorithms for recycling certain types of hierarchical index struc-

tures (i.e., trees). Variations of the algorithms described can be applied to other structures (e.g.,

hash tables), but we restrict our discussion to those types of index for which we have implemen-

tations and benchmarks.

There are two general types of hierarchical index structures:ordered(e.g., B+-trees, Hilbert

R-trees [KAME94]) andunordered(e.g., R-trees). Generally speaking, a “bottom-up” recycling

strategy similar to that described by Sunet al. should work for nearly any ordered structure.

However, a bottom-up strategy may not necessarily work well for an unordered structure. In this

section, we propose a taxonomy of techniques for recycling either ordered or unordered trees.

Figure 1 shows our generic strategies for constructing hierarchical structures. For pictorial

clarity, the strategies are depicted as modifying the tree in-place, but it should be understood that

changes are actually being reflected in the target index.

• Ordered structures such as the B+-tree should use thebottom-upstrategy shown in Figure

1(a). In this strategy, the tuples from the leaf pages of the source index are simply repacked

into leaf pages in the target index and the remainder of the target index built bottom-up. The

structure (e.g., fill factor, height) of the upper levels of an ordered tree is independent of the

leaf key values, so the concern for such trees should be building a short, well-balanced target

tree rather than attempting to reproduce any properties of the source tree.

• To index an unordered structure that supports an abstract node split/merge interface, one

could use thetop-downstrategy in Figure 1(b). By recursively merging underfull nodes and

splitting overfull nodes, this strategy can achieve a desired fill factor.

• Theserpentinestrategy of Figure 1(c) can be applied to unordered structures in which heuris-

tic orderings can reasonably be applied in a very local context (e.g., within the keys stored in

a single node). For example, while traversing an R-tree, we can “order” the bounding box

keys contained in each internal node using the same metric by which we would split the page

(or one that is very similar). We then visit the children of that node in the sorted order instead
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(a) Bottom-up. (b) Top-down.
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process each child subtree in turn

process the next sibling subtree

(c) Serpentine.

Figure 1. Strategies for recycling index structure.

of the (non-)order in which they are actually stored. For classic R-trees, this means ordering

the keys by their “proximity” to the split seed values. Because structures such as R-trees do

not normally order keys within a page, the goal of this serpentine traversal is to assure that

nodes that wind up sharing keys due to splitting/merging are at least neighbors according to

this heuristic ordering rather than random keys on the same page.
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We will revisit this taxonomy when we discuss their empirical effectiveness on R-trees in

Section 4.3.

3.2. Recycling Pointers

In Section 2.2, we discussed what amount to several kinds of TIDs. Just as one can have

physical, logical or physiological logging, one can havephysical TIDs (e.g., relative byte

addresses of the form{page,offset} ), logical TIDs (e.g., primary key addresses of the form

{key} ), and any number of hybridphysiologicalTIDs (e.g.,{page,key} ). This is discussed

in more detail in [GRAY93, p. 760]. All are used in one system or another. For example, object

systems (e.g., POMS [COCK84]) often use relative byte addresses, whereas relational systems

(e.g., NonStop SQL) sometimes use primary keys as TIDs.

In fact, most database systems use a particular kind of physiological TID instead of the

physical TIDs discussed by Sunet al. These systems useslotted pages; that is, they store an

array of item identifiers(also known asslots or line arrays) at a known location on each disk

page.2 Item IDs contain the byte offset within the page of each tuple on that page; TIDs, there-

fore, are of the form{page,index} whereindex is the array index of the item ID that con-

tains the byte offset of the desired tuple onpage . Although index is an index into a physical

array, it is immutable (as long as the tuple does not move to a different page) and is therefore a

logical identifier within the page. A wide range of data managers use slotted pages, including

relational and object-relational databases (e.g., nearly all IBM relational systems [MOHA93],

Illustra [ILLU95], Oracle Rdb [HOBB91, p. 79]) as well as object data managers3 (e.g., ESM

[CARE88], O2 [DEUX90], Papyrus [CONN93], SHORE [CARE94]). The advantages of this

scheme are discussed in more detail elsewhere [GRAY93, p. 755].

Item IDs have a critical property: unlike tuples, item IDs are fixed-size. As we will see, the

ability to combine the item ID arrays of several pages means that we can calculate the position of

a giv en tuple’s item ID on the target page using only its original TID and a small amount of addi-

tional per-page information.

Figure 2 demonstrates our proposed method for creating the kind of translation table just

described. We will show how the base table pages are copied fromS to T, how the translation

table entries are constructed and used, and how the translation table can be made more compact.

2 Or, in some systems, segments (groups of pages).
3 The fact that an object data manager exposes logical OIDs to the user does not preclude its internal use of physiological TIDs. For exam-

ple, SHORE does exactly that.
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Figure 2. Example using slotted pages.

Throughout the figure, Times-Roman andbold italic indicate values valid forS andT, respec-

tively.

In Figure 2(a), we see that the source machine has 1KB pages, whereas the target machine

has 1/2 KB pages. Tuplesa through f are being packed into target pages in order to fit them into

the minimal number of pages possible without reordering; note that tuples from both source

pages 1 and 2 have both been placed on target page 3. In addition to the data items, each page

contains an array of item IDs. When a tuple is copied to a page, its item ID is copied to the same

page. For pictorial clarity, we depict this array as being stored in a separate part of the page from

the tuples.

Figure 2(b) shows how the translation table is constructed and used. We load the translation

table incrementally as we copy the base table tuples from source pages to target paget; the table

contains an entry for source pages and target paget iff any tuple froms has been copied intot.

In that respect, our translation table is similar to the byte offset translation table from [SUN94].

The key difference is that each entry in our translation table stores therangeof item ID array

indices corresponding to the tuples that have been copied froms into t. Recall that we never
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reorder tuples, implying that any tuples copied froms to t must be in the same order on boths

and t. Furthermore, unlike byte offsets, item ID array indices formcontinuous sequences.4

Hence, we can translate any array index by simple interpolation.

Figure 2(b) also demonstrates how to recoverd’s item ID array index. Here,d has source

TID {2,(1)} . First, we examine the translation table entries that correspond to source page 2.

We then find the entry such that our source index falls between the “first” and “last” source array

index values in the second and third columns. Our array index,(2) , falls in the range

(1),(2) . This means that we need the fourth row of the table. This row indicates that

{2,(1)} maps to{3,(2)} and that{2,(2)} maps to{3,(3)} . The target TID ford is

therefore{3,(2)} . By contrast, the mechanism described by Sunet al. cannot recover the full

TID for item d without searching page 3.

Finally, Figures 2(b) and (c) indicate how we can make the translation table much more

compact. First, we can eliminate the shaded values in Figure 2(b) that can be inferred from other

available information. Second, we do not have to store the source page number shown in Figure

2(c) because it is implicit in the array address. Let |S| and |T| represent the number of pages inS

andT, respectively. If we assume that each page number is 32 bits and each item ID array index

is 16 bits, the table in Figure 2(c) will require 6|S| + 2(|S| − 1) + 2|T| ≈ 8|S| + 2|T| bytes. This is

2|S| bytes smaller than the Sunet al. translation table. In general, for typical page sizes, the

table will be two to three orders of magnitude smaller than the base table. This should easily fit

in main memory.

Note that the preceding discussion assumes that we assign logical sequence numbers

(0. . .n) to the pages of a table. If not provided by the operating system or the database, such

sequence numbers can be assigned on-the-fly while moving the base table.

4. Performance Analysis

In the previous section we described new algorithms for recycling index structure and trans-

lating TIDs. This section describes our implementation of these algorithms and the experiments

we have performed to demonstrate their effectiveness at reducing the expense of reindexing

4 Note that the ordering and spacing of the item ID arrays must be preserved so that an index into the source page’s array can be used to in-
dex into a set of item IDs that may be spread over sev eral target pages. In practice, item ID arrays have gaps corresponding to item IDs for delet-
ed tuples, but preserving these gaps is not a problem because gaps will eventually be reused when new tuples are inserted on a page. Note also
that the slotted page indirection means that the physical location of the tuple corresponding to a given item ID does not matter as long as it is still
on the same page as its item ID. Hence, our original constraint that tuples are not reordered can be relaxed slightly.

In fact, most slotted page implementations allow a tuple to be replaced by a forwarding TID. The query processing engine will follow
such forwarding pointers, which makes possible the relocation of tuples between pages. However, a high proportion of forwarding pointers great-
ly degrades performance by adding yet another level of indirection and every effort is made to avoid such relocation.
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moved tables.

4.1. Implementation in Mariposa

Implementing the algorithms described above in Mariposa was relatively straightforward.

First, we modified the storage system to support several required abstractions (e.g., variable

buffer sizes). Second, we implemented the additional functionality need to perform the TID

translation. That is, we implemented the Sunet al. byte offset TID translation routines as well

as our own slotted page TID translation routines. We did not actually convert Mariposa into a

system using byte offset TIDs; instead, we simulated their algorithm by performing all of the

steps required and then placing Mariposa TIDs into the index tuples. Finally, we reimplemented

some existing Mariposa utilities to provide credible base cases for our performance comparisons.

The additional code required to implement our recycling routines is extremely small. In

fact, each access method requires only 500 lines of C. The byte offset and slotted page TID

translation routines (common to all access methods) are under 800 lines.

We spent a fair amount of effort implementing and tuning a B+-tree bulk-load routine to

replace the existing insertion-load routine.5 A credible sort/build bulk-load is important as a base

case for our tests — in the experimental environment described below, building an index on

100MB of uniform random base table data takes over 3.5 hours using the POSTGRES 4.2 inser-

tion-load routine and takes under six minutes using our bulk-load routine.

4.2. Experimental Environment

Our experimental hardware environment consisted of DECstation 3000/300 Alpha AXP

workstations rated at 66 SPECint92. All machines were configured with Digital UNIX 3.2,

64MB of main memory and RZ26L disk drives.

We conducted measurements using several different data sets. All base tables and indices

were stored as ordinary UNIX files and all base tables were organized as primary heaps. Table 1

summarizes the basic parameters of the data used in our study. The data sets for the B+-tree tests

were synthetic, with integer keys generated uniformly at random. The data sets for the R-tree

tests consisted of geographic data obtained from the U. S. Geological Survey. The small data set

was taken from the regional version of the Sequoia 2000 benchmark [STON93a] and contained

60,000 points and 80,000 polygons extracted from the USGS GNIS [USGS95] and Land Use

5 Our bulk-load routine uses the standard technique of extracting{key,TID} pairs from the base table, sorting the pairs into index leaf
pages and then building the rest of the tree bottom-up. Our external sorting routine follows the recent trend [DEWI91, GRAE92, NYBE94] to-
ward quicksort-based run generation.
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Index Base Table (Heap)
Type Cardinality Size Distributions

(tuples) (bytes) clustered unclustered

B+-tree 104 106 sorted random
105 107 sorted random
106 108 sorted random

R-tree 1. 4× 105 1. 3× 107 Hilbert (H22) alphabetic
1. 4× 106 1. 6× 108 Hilbert (H25) alphabetic

Table 1. Benchmark data sets.

and Land Cover [USGS86] databases for the state of California. The large data set consisted of

the contents of GNIS for the entire continental United States and contained nearly 1,400,000

points with their associated place names. Each B+-tree and R-tree data set was loaded into a base

table in two different orders. Depending on the index type, the load order of the data in the base

table can strongly affect the build time and final structure of the indices built over it. The base

tables used in the B+-tree studies were loaded in both numerically sorted and random key order,

whereas the base tables used in the R-tree studies were loaded in bothleast Hilbert valueorder

[KAME93] and the alphabetic order in which the USGS distributes the data.

The following conventions apply to all I/O measurements described hereafter. Page access

counts include both reads and writes. Counts are measured in the file system routines below the

buffer manager (i.e., they measure the number of file system requests made by the buffer man-

ager and bulk I/O routines) and therefore do not necessarily correspond to physical I/Os because

of file system caching.6

6 Mariposa servers were configured with default buffer pools (512KB shared, 512KB per-server unshared). However, this does not affect
the results as much as might be expected; because the server buffer manager does not support either asynchronous (read-ahead or write-behind) or
multi-page I/O requests, utilities such as the sort/build routine perform their own bulk I/O using private buffers. In addition, efforts were made to
enforce “cold cache” conditions. Server buffer pools were completely flushed between experiments, forcing out even metadata pages. This errs
on the side of conservatism because it means that the query startup latency (opening tables, etc.) is larger than in the steady state. The file system
cache was flushed between experiments by reading and writing large files.
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4.3. Experimental Results

The goals of our experimental measurements were as follows:

• Demonstrate that recycling an index can be substantially faster than rebuilding an index.

• Explore the performance tradeoffs (if any) between recycling and rebuilding in terms of our

main experimental variables (table size, page size, data clustering).

• Determine the kind of network bandwidth conditions under which recycling (which inher-

ently involves the transmission of more data than rebuilding) becomes impractical.

These experiments were conducted using ordered trees (i.e., B+-trees)

In addition to the access method-independent goals, we had the following goal specific to

unordered trees:

• Measure the reindexing speedup and retrieval degradation caused by our various heuristics for

recycling unordered trees.

Experiments on Ordered Trees

We performed experiments consisting of all combinations of three table sizes, three target

page sizes, and two types of data clustering for a total of 18 experiments. We report only repre-

sentative data here.7 Motivated by the analytic results of Sunet al., we measured the performance

of our algorithms using some of the same parameters used in their study. For example, merge

fan-in for the sorting routine was fixed at their “typical value” of seven for all experiments. Fig-

ures 3, 4 and 5 show comparisons between the Sunet al. byteoffset translation mechanism, our

own slotted page translation mechanism, and the standardsort/build mechanism. The latter

forms the base case against which we compare the mapping algorithms.

Figures 3 and 4 show the difference in performance between the three mechanisms under

different parameters. In these figures, we do not include the cost of reformatting or transmitting

the base table over the network because these costs are the same for all three. In addition, we

ignore the transmission delay incurred by sending the index over the network; this cost obviously

varies widely depending on the type of network used and will be considered in Figure 5.

Figure 3 shows how the various algorithms scale up with increasing file size with page size

fixed at 4KB. The measurements here are representative of data collected for 2KB and 8KB

pages as well. Predictably, the elapsed time and the number of I/Os increases in a linear fashion.

7 We performed additional experiments that varied the amount of buffer space available to the sort/build routine, but varying this parameter
did not make an appreciable difference because very large I/O units provided diminishing returns.
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However, as hoped, index recycling provides significant time and I/O-cost savings over

sort/build.

Observe that clustering has varying effects on the different algorithms. We do not differen-

tiate between the clustered and unclustered cases for sort/build and slotted-page translation; the

performance of these algorithms is not sensitive to clustering because they only perform one

sequential scan of the base table. Because the offset algorithm must randomly probe the base

table many times, it is very sensitive to base table clustering. As predicted in Section 2, translat-

ing byte offsets by searching base table pages is extremely time-consuming.

Figure 4 shows the effect of target page size on our algorithms with table cardinality fixed at

106. Again, this data represents runs made for 104 and 105 tuples as well. In each plot, we show

the performance of reformatting 8KB pages into 2KB, 4KB and 8KB pages. The plots of the

sort/build and slotted page algorithms resemble the predictions of Sunet al. for sort/build and

their own algorithm. Both sort/build and the slotted page recycling algorithm do slightly better

as target page size increases because the I/O that goes through the buffer manager is mostly

sequential (which is more efficient with larger I/O units). Also, as predicted, sort/build benefits

slightly more than index recycling from the increased page size. By contrast, the byte-offset

algorithm degrades as page size increases, particularly in the unclustered case. The number of

page faults does go down as the page size increases because the probability of the next heap tuple

being on the same page as the current heap tuple increases. However, misses are still more com-

mon than not, and doubling the page size increases the disk wait (miss penalty). The increased

page size therefore makes the byte-offset algorithm less efficient.

Our final set of ordered tree results show how network bandwidth limitations affects the rel-

ative performance of the algorithms. The performance analysis of Sunet al. was limited to the

Ethernet LAN case. Table 2 shows mean network transmission delays obtained by repeated mea-

surement on representative local area (Berkeley), metropolitan area (BARRNet) and wide area

(MCINet/AlterNet) networks. These were obtained by simple measurement at various times;

they represent neither the best case nor the worst case, but simply indicate the kind of bandwidth

available in the US networks at the time. Figure 5 shows the effects of adding these delays to the

relative performance of the various algorithms. Algorithms that translate and transmit the leaf

pages work well in the high-bandwidth MAN case (and, by extension, the LAN case). As band-

width decreases, as in the WAN case, sending the leaf pages of the index takes far more time

than simply rebuilding the index.
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Delay by Network Type,sec.

FDDI Ethernet Regional National

LAN LAN MAN WAN

File Size

MB (tuples)

0.3 (104) 0.28 0.39 1.66 6.78

3 (105) 1.3 2.63 13.7 79.0

30 (106) 13.3 27.1 84.0 735

Table 2. Representative network transmission delays for index files.
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The WAN result is not encouraging. It is possible to make index recycling marginally

cheaper than sort/build by compressing the index (e.g., by sending only the TIDs). Reducing the
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transmission delay due to index size and adding in the cost of an extra scan of the base table on

the target machine results in the “comp. slotted” plot in Figure 5(b). However, we cannot always

apply this technique (see [AOKI95]). Under the characteristics described in this section, then,

index recycling appears to be practical in local area (10-100 Mb/s) as well as metropolitan area

(≈ 1 Mb/s) networks. However, below 100 Kb/s the scheme uses too much network bandwidth

to be competitive.

Experiments on Unordered Trees: Avoiding Index Degradation

In our final set of experiments, we benchmarked slotted page index recycling against the

Mariposa R-tree build routine. We tested several variations on and combinations of the generic

structural recycling methods described in Section 3.1. The methods are indicated by the lettersN

(none),S (sort),P (partition),SP (partition and sort) andB (build index). Noneis a naive bot-

tom-up build. Because it packs index tuples from several different source leaf pages onto the

same target leaf pages irrespective of whether the source pages are clustered or not, we would

expect this heuristic to degrade the clustering of the source index.Partition is the same as None,

except that the recycling routine avoids placing index tuples from different source pages onto the

same target page. This has an obvious impact on the fill factor of the target pages but should not

cause as many clustering problems.Sort is a serpentine traversal that uses the heuristic described

in Section 3.1.Sort and Partitionis a combination of the two heuristics just described. Finally,

Build is the standard Mariposa R-tree build algorithm. We measured each of these five methods

while copying a table from 2KB pages to 8KB pages andvice versa. We performed these ten

experiments over both of the two different R-tree data sets and both clustered and unclustered

data for a total of 40 experiments.

As previously mentioned, the goal of these experiments was to determine whether inexpen-

sive recycling techniques could be applied without degrading the retrieval effectiveness of the

target index. The metrics for our experiments were:

• Reindexing Performance: The delay from the initiation of the movement operation to the time

when both the target table and its index are available.

• Retrieval Performance: Since we are concerned with the performance of actual index

instances, we assess the “goodness” of an R-tree using the bounding box coverage metric of

Kamel and Faloutsos [KAME93]:

P(→q) =
N

n=1
Σ

D

i=1
Π(xi ,n + qi )

where →xn = (x1,n, . . . ,xD,n) and →q = (q1, . . . ,qD) areD-dimensional node bounding boxes and
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query boxes with side lengthxi ,n andqi , respectively, andP(→q) is the expected mean number

of R-tree nodes visited while searching for→q.

Representative results of our experiments are shown in Figure 6. The figures on the left

side correspond to a 4:1 increase in page size, whereas the figures on the right correspond to a

4:1 decrease. The top and bottom sets of figures show the table movement time (in seconds) and

P(→q) for both clustered and unclustered versions of the larger R-tree data set.

Figures 6(a) and (b) break down the total table movement time into the time required to

reformat the base table and the time to rebuild/recycle the index. As we can see, the index opera-

tions are far more expensive than the base table copy. Furthermore, the figures show that rebuild-

ing an R-tree is extremely expensive — Figure 6(a) indicates that a 130MB R-tree build can con-

sume the entire processing capability of a workstation for over 1.5 hours.

Figures 6(c) and (d) do demonstrate that building a new R-tree almost always produces a

better R-tree than recycling. That is, the rebuilt R-tree generally has a smallerP(→q) than the

recycled R-trees. However, the results of recycling are often not significantly worse than the

result of rebuilding. In particular, the Partition heuristic achieves a fairly reasonable and consis-

tent level of retrieval degradation across all levels of clustering and changes in page size. On the

other hand, the Sort heuristic is very sensitive to some of our experimental parameters.

It appears that a simple bottom-up build, combined with the Partition heuristic to prevent

the worst cases of declustering, is reasonably effective in producing a “good” index and is many

times faster than rebuilding the index. Hence, index recycling appears to be an excellent way to

put the table and an index “on line” quickly.

5. Future Work

There are several interesting issues that arise in the implementation of index recycling.

These are described in more detail in [AOKI95].

• Lazy Translation: What are the performance tradeoffs of lazy and eager translation, given that

the table and its indices may not be heavily used before the next time they are moved?

• Support for Additional Access Methods: Intelligent support for index types other than basic

trees will require careful thought. For example, it is not clear that recycling hash indices

always makes sense.

• Parallelism: Index recycling appears to be “embarrassingly parallel”; a parallel implementa-

tion could reveal unforeseen bottlenecks.
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• Compression: There are several options for compressing the transmitted index files, ranging

from the application of lossless compression utilities to the careful use of semantic compres-

sion (e.g., transmitting only the TIDs of the leaf index tuples).

• Concurrency Control and Recovery: Because we use a technique similar to “old-master/new-

master” rather than in-place translation, we never modify the source base table or index table

as part of the translation process. However, naive techniques of this kind are not concurrent;

there are a variety of ways to improve reorganization concurrency while retaining recoverabil-

ity (e.g., [MOHA92, SRIN92]).

6. Conclusions

While the ideas proposed in [SUN94] are useful, the algorithms described are not a good fit

for implementation in existing systems. By adapting their algorithms for use with slotted pages,

we have produced practical techniques for recycling secondary indices. In addition, we have

generalized the notion of recycling to unordered trees as well as ordered trees. Finally, we hav e

empirically demonstrated the performance benefits by implementation and measurement and

have provided evidence that our techniques may have wider applicability than LANs.
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